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Problem 1. The outer circle in the Figure 1 has radius 1 and the centers of
the interior circular arcs lie on the outer circle. Find the area of the shaded
region.

Figure 1: Problem 1.

Solution. As shown in the Figure 2, only é of the area needs to be calculated
due to symmetry.

Figure 2: Solution to Problem 1.

*For any issues, email me at xweiaf@connect.ust.hk.



The circle with center (—1,0) and radius v/2 (where the thick arc lies) has
equation
(4 1)2 4+ 92 =2, 1)

converting to polar coordinate,
(rcos® +1)* + (rsinf)? = 2. (2)

The equation above can be simplified to be a quadratic equation with respect
to r,
r? 4+ 2rcosf = 1. (3)

Using the quadratic formula to solve for r gives

_ —2cosf + V4dcos?0+4
= 5 ,

r

(4)
and since we presume that r > 0,

r=—cosf+ +/cos?20 + 1. (5)

Then, denoting the area of the shaded region in Figure 1 to be A, we have

1 i1
~A= [ -ride. 6
A= )
Plug Equation (5) into Equation (6) and calculate the integral, yielding
2
A= g +2-2V3. (7)
O

Problem 2. Show that any tangent line to a hyperbola touches the hyperbola
halfway between the points of intersection of the tangent and the asymptotes.

Solution. Without loss of generality, assume the hyperbola has equation
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Take derivatives on both sides with respective to x, yielding
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The tangent line at the point (¢, d) on the hyperbola has equation (assuming
y # 0 here, and if y = 0, the conclusion clearly holds since all three points
coincide ):

y—d=—(x—c). (11)



Plugging into equations of asymptotes yields that the tangent line intersects
the asi/mptoti Y d: %J;bat (%, %), and it intersections the asymptote
y:—gmat ( c—a 7a;c

Then the midpoint of these intersection points is exactly (¢, d), the point of

tangency.
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