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1. (Demonstration) Review how to derive the governing equations, determine the normal
modes, and write the general solution of the following spring-mass problem discussed in
lecture:

m m

k kK

x1 x2
Figure 1. Two masses, three springs

Solution:

To derive the governing equation for the coupled oscillators, we �rst notice that the instan-
taneous state of the system is conveniently speci�ed by the displacements (restricted to
1D) of the masses, x1(t) and x2(t), respectively. The extensions (compared to equilibrium)
of the left, middle and right spings are x1, x2 ¡ x1, and ¡x2, respectively, assuming that
x1=x2=0 correspondes to the equilibrium con�guration.

The equations of motion of the two masses are thus8><>:
mx�

1
= ¡k x1+K(x2¡x1);

mx�2 = ¡K(x2¡x1)+ k(¡x2):

Here we are assuming that the springs are of linear elasticity, and ignoring springs' inertia.
Therefore, a mass attached to the left end of a spring of extension x and spring constant
k experiences a horizontal force k x, whereas a mass attached to the right end of the same
spring experiences an equal and opposite force ¡k x.

The equations can be rewritten in the form8>>>><>>>>:
x�
1
= ¡k+K

m
x1+

K
m
x2;

x�2 =
K
m
x1¡

k+K
m

x2:

�. This document has been written using the GNU TEXMACS text editor (see www.texmacs.org).
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Besides solving the system via general tools discussed before, we may make use of symmetry
of this problem to decouple the system8>>>><>>>>:

x�
1
+x�2 = ¡ k

m
(x1+x2);

x�
1
¡x�2 = ¡k+2K

m
(x1¡x2):

The insight provided in doing so is that, for any arbitrary motion of the system, the quantity

x1+x2 oscillates with frequency !1=
k

m

q
, and the quantity x1¡x2 oscillates with frequency

!2 =
k+2K

m

q
. In other words, we have found the normal coordinates of the system. The

motion of the system can be decomposed into two independent parts.

After obtaining the equations for normal coordinates, the normal modes can be calculated
by setting one of the normal coordinates to be zero:

When x1¡x2=0,8>><>>:
x�
1
+x�2 = ¡ k

m
(x1+x2)

x1¡x2 = 0

) x1(t)=x2(t)=A1 cos(!1t+ �1):

When x1+x2=0,8>><>>:
x1+x2 = 0

x�
1
¡x�2 = ¡k+2K

m
(x1¡x2):

) x1(t)=¡x2(t)=A2 cos(!2t+ �2):

At last the general solution (representing any dynamics of the system) is a linear combina-
tion of normal modes8<: x1(t) = A1 cos(!1t+ �1)+A2 cos(!2t+ �2)

x2(t) = A1 cos(!1t+ �1)¡A2 cos(!2t+ �2)
;

where !1=
k

m

q
, !2=

k+2K

m

q
, and A1;2; �1;2 are arbitrary constants depending on initial

condition.

Remark 1. An alternative approach is to solve for general solution �rst. Say the solution
is found to be �

x1(t)
x2(t)

�
= B1

�
a
b

�
cos(!1t+ �1) +B2

�
c
d

�
cos(!2t+ �2);

then one can eliminate one mode out of two to get normal coordinates d x1 ¡ c x2 and
b x1¡ a x2.

Remark 2. Yet another approach, based on the observation that the normal modes are
the motion where both masses oscillates at the same frequency, is to look for solutions of
the form �

x1(t)
x2(t)

�
=

�
p
q

�
cos(! t+ �):
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Upon plugging in, a quadratic equation for ! can be derived, solving two roots to yield all
the normal modes.

This method in actually equivalent to using undetermined coefficients to decouple the
system, as we shall see in the next problem.

2. (Practice) Find the governing equations, determine the normal modes, and write the
general solution of the following spring-mass problem:

m m

k K

x1 x2
Figure 2. Two masses, two springs

Solution: Following the assumptions above in the demo, we can write the equations of
motion 8>>>><>>>>:

x�
1
= ¡ k

m
x1+

K
m
(x2¡x1);

x�2 = ¡K
m
(x2¡x1):

The di�erence is a missing force in the second equation, which breaks symmetry and the
normal coordinates are not immediately clear. But we may �nd them out through undeter-
mined coe�cients. Following the eqautions, for any p; q 2R, we have

p x�
1
+ q x�2 =

�
¡p k+K

m
x1+ p

K
m
x2

�
+

�
q
K
m
x1¡ q

K
m
x2

�

=
1

m
[qK ¡ p (k+K)]x1+

1

m
(pK ¡ qK)x2:

To decouple the system, we need to make the equation for the combination autonomous, i.e.,

p x�
1
+ q x�2 = ¡!2 (px1+ q x2):

Therefore,

qK ¡ p (k+K)

p
=

pK ¡ qK

q
:

3



Let r= q

p
, then the condition above yields a quadratic equation for r (obviously p; q=/ 0)

Kr¡ (k+K) =
1
r
K ¡K

m
Kr2¡ k r¡K = 0

m

r2¡ k
K
r¡ 1 = 0

+

r =

k

K
�

�
k

K

�
2
+4

r
2

=
1
K

24 k
2
�

�
k
2

�
2

+K2

s 35:
Denote the two roots as r�, then

x�
1
+ r�x�2 = ¡!�2 (x1+ r�x2);

where the frequencies satisfy

¡!�2 =
1
m
[r�K ¡ (k+K)]

!� = ¡ 1
m
[r�K ¡ (k+K)]

r

= ¡ 1
m

24 k
2
�

�
k
2

�
2

+K2

s
¡ (k+K)

35
vuuut

=
1
m

24K +
k
2
�

�
k
2

�
2

+K2

s 35
vuuut :

Now we may write the normal modes as A� cos(!�t+��), with A�; �� dependent on initial
values, corresponding to normal coordinates x1+ r� x2. Thus the general solution can be
obtained from 8<: x1+ r+x2 = A+ cos(!+t+ �+)

x1+ r¡x2 = A¡ cos(!¡t+ �¡)
:

Therefore,�
1
r+
¡ 1
r¡

�
x1 =

A+
r+

cos(!+t+ �+)¡
A¡
r¡

cos(!¡t+ �¡)

x1 =
1

r¡¡ r+
[r¡A+ cos(!+t+ �+)¡ r+A¡ cos(!¡t+ �¡)]

= A+
r¡

r¡¡ r+
cos(!+t+ �+)¡A¡

r+
r¡¡ r+

cos(!¡t+ �¡):
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And

(r+¡ r¡) x2 = A+ cos(!+t+ �+)¡A¡ cos(!¡t+ �¡)

x2 = A+
1

r+¡ r¡
cos(!+t+ �+)¡A¡

1
r+¡ r¡

cos(!¡t+ �¡):

Remark 3. As mentioned before, we may also �nd the normal modes by looking for
particular solutions of the form�

x1(t)
x2(t)

�
=

�
u
v

�
cos(! t+ �):

Then

x�
1
= ¡u!2 cos(! t+ �);

x�
2
= ¡v!2 cos(! t+ �):

Comparing with the right hand side of the equations of motion, we have

¡u!2 cos(! t+ �) = ¡ k
m
u cos(! t+ �)+

K
m
(v¡u) cos(! t+ �);

¡v !2 cos(! t+ �) = ¡K
m
(v¡u)cos(! t+ �):

Therefore,

¡u!2 = ¡ k
m
u+

K
m
(v¡u) ;

¡v!2 = ¡K
m
(v¡u):

Dividing the two eqautions, and denote s= u

v
, we have an equation for s

s =
¡ k

K
s+1¡ s
s¡ 1

s2+
k
K
s¡ 1 = 0:

Solving for the roots s� and one can get the same results via !2= K

m
(1¡ s).

3. (Practice) Find the governing equations, determine the normal modes, and write the
general solution of the following spring-mass problem:

m m

kk

x1 x2

k k

x3

m

Figure 3. Three masses, four springs
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Solution: First we write the equations of motion just like above8>>>>>>>>><>>>>>>>>>:

x�
1
= ¡ k

m
x1+

k
m
(x2¡x1)

x�2 = ¡ k
m
(x2¡x1)+

k
m
(x3¡x2)

x�3 = ¡ k
m
(x3¡x2)+

k
m
(¡x3)

:

Rewriting the system into vector form

x� =
k
m

266664
¡2 1 0

1 ¡2 1

0 1 ¡2

377775x

Denote the matrix above as A. The normal modes can be found by assuming each mass
moves with a common frequency (but with its own amplitude and phase). Then x�i=¡!2xi;
8i, i.e.

x� =
k
m
Ax=¡!2Ix:

The equation above should have nontrivial solution, meaning that ¡!2 is eigenvalue of k

m
A.

Since three eigenvalues of A are

�1 = ¡2¡ 2
p

;

�2 = ¡2;
�3 = ¡2+ 2

p
;

with corresponding eigenvectors

v1 =
1
2

�
1;¡ 2

p
; 1

�
T ;

v2 =
1

2
p [¡1; 0; 1]T ;

v3 =
1
2

�
1; 2
p

; 1
�
T ;

we have !i2=¡
k

m
�i, thus

!1 =
¡
2+ 2

p � k
m

r
;

!2 =
2k
m

r
;

!3 =
¡
2¡ 2

p � k
m

r
:

Therefore, the normal modes are Ai cos(!it+ �i).
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Denote P = [v1; v2; v3];�=diag(�1; �2; �3), then A=P�PT , and

x� =
k
m
Ax

+

PTx� =
k

m
�(PTx);

in other words, the normal coordinates are PTx, i.e.

PTx =

2666666666664

1
2

¡ 1

2
p 1

2

¡ 1

2
p 0

1

2
p

1
2

1

2
p 1

2

3777777777775
x

=

2666666666664

1

2
x1¡

1

2
p x2+

1

2
x3

¡ 1

2
p x1+

1

2
p x3

1
2
x1+

1

2
p x2+

1
2
x3

3777777777775
:

At last, the general solution is obtained through the relation PTx= [Ai cos(!it+ �i)],

x = P [Ai cos(!it+ �i)]

=

2666666666664

1
2

¡ 1

2
p 1

2

¡ 1

2
p 0

1

2
p

1
2

1

2
p 1

2

3777777777775

266664
A1 cos(!1t+ �1)

A2 cos(!2t+ �2)

A3 cos(!3t+ �3)

377775

=

2666666666664

1
2
A1 cos(!1t+ �1)¡

1

2
p A2 cos(!2t+ �2) +

1
2
A3 cos(!3t+ �3)

¡ 1

2
p A1 cos(!1t+ �1)+

1

2
p A3 cos(!3t+ �3)

1
2
A1 cos(!1t+ �1) +

1

2
p A2 cos(!2t+ �2) +

1
2
A3 cos(!3t+ �3)

3777777777775
:
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