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1. (Demonstration) Solve
a) 2®y"+ay' —y=0; y(0)=0, y(1)=1
b) 2?y” —wy'+(1+7°/4)y=0; y(1)=1, y(e)=e
c) 2y’ +3xy +y=0; y(1)=1, yle)=1

Solution: We provide three methods that are powerful enough to deal with general Cauchy-
Euler equations. Each problem is solved using one of them respectively.

a) [Solving through trial solution]

We may directly look for solutions of the form y(z)=x". For this kind of functions,
we have

ry = ry,

22y" = r(r—1)y.

Plugging into the ODE,
[r(r—1)4+7r—1]y(x) = 0, Vpossiblex.
Then we have

(r+1)(r—1) = 0
r = +1.

Now we have two independent solutions to the ODE, y;(z) =z and yo(z) = % Thanks
to the linearity of the equation, any solution to it can be written as

1
y(r) = Cro+Co pet Ci2€R.
Taking advantage of the boundary conditions, we have

Cy = 0,
C, =1
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So the solution to the Cauchy problem should be

y(z) = =z

[Solution through change of variables/

Apply a change of variables by letting
t = Inx.

And the solution is now a function dependent on ¢,

Differentiating,

Substitute into the ODE, we have
O(t) —20'(t)+ (1 +72/4)®(t) = 0.

And the boundary conditions

Now the equation is of constant coefficients and can be easily solved using its char-
acteristic polynomial

r2—2r+(1+4+72/4) = 0

Then
B(t) = Cre™ D4 e 0 ,e.
Making use of the boundary conditions

1:@(0) = C1+ Oy,

e=®(1) = 011 773) 4 0173,
The second equation is equivalen to

Ci—Cy = —i.



So we have C :%, 02:%, thus
Bt = Gy ()
= ¢t [Clei%tJrC’geﬂ%t}
1 iTt, —iTt it —ilt

— e 5[(cl+cg)(e P e B (01— Cy) (e e )}

= ¢t {cos(gt) + sin(gt)]
Transform back to z =ef, we have

ylz) = =z [cos(glnx) +sin(glnx)}, x>0.

[Series solution]

As seen in a), solutions to Cauchy-Euler equations may contain functions like % that
cannot be expanded at x =0. However, series solutions may still be found by the so-
called Frobenius method (Laurent series), simply by assuming a solution of the form

(o)
y(z) = xTZ anz™
n=0

o0
= E anx™ .
n=0

In addition, we assume that ag=0, this does not affect generality since we can always
adjust r to acheive that for any nonzero series. By doing so we can fix r to be certain
values (removing null space). Then we have

(n+7)apz™™r,
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Plugging into the ODE, we have
o0
Z [(n+7r)(n+r—1a,+3(n+7)a,+ay)z"t = 0, Vpossiblex.
n=0

Therefore,
(n+r)(n+r—1)an+3(n+r)a,+a, = 0, VnelN.
Setting n =0, and noting ag# 0, we have a quadratic equation for r,

r?24+2r+1 = 0
r = —1.



Plugging into the recurrence relation,

na, = 0, VYn>1.

Note that this is a case where we have repeated roots. One solution is thus what we
started out looking for

o0
yi(z) = x_lz anT"

n=0

ao

While the other one is of the form
yo(x) = yi(x) logx—HcTZ anz™.
n=1

Note that the term n = 0 is ommitted as it would just give a multiple of yi(x).
Therefore,

. log x
ya(x) = ap .
Now, the general solution is
1 log x
y(ac) = C1—+0Cy R CLQER.
x x
Using the boundary conditions
l=y(1) = C1
Cy | Cs
1= = -4 ==
y(e) T

we have C1=1, Co=e—1. So

log x

y@) = o+ (e—1)=8

Remark 1. The “characteristic equations” w.r.t. r from all three methods above are
the same.

Remark 2. When there are repeated root, one should look for
i. First method: 2" logz, 2" (log )2, ...
ii. Second method: te™, t2e"t, ...

iii. Third method: ya(x) = yi(z)loga+a"y " apa™ ...

Remark 3. The series solution method is the most powerful one, which can deal
with more general equations of the form

2y " +ap(x)y' —q@)y = 0



with p(z), ¢(z) expandable into Taylor series at = 0. However, the powerfulness
comes with a price. In addition to dealing with repeated roots, one also need to deal
with another special case where the two roots are differed by an integer, r1 —ro=N,
N € Z* similarly to the repeated-root case.

2. (Practice) Solve
a) 2y’ —2xy'+2y=0, ¢'(0)=1, y(1)=0
b) 22%y" —xy'+y=0, y(1)=0, y(4)=1
Solution:

a) The general solution is

>>> from sympy import Function, dsolve, diff

>>> from sympy.abc import x

>>> y = Function(’y’)

>>> solu = dsolve(diff(y(x),x,x)*x*x - diff(y(x),x)*x*2 + 2*xy(x),
y(x), hint=’nth_linear_euler_eq_homogeneous’)

>>> solu

Eq(y(x), x*(C1 + C2*x))
i.e., y(r) = Cyx + Ce 2. Applying boundary conditions, we have

y(x) = —(z—1)z.

b) The general solution is

>>> solu = dsolve(diff (y(x),x,x)*2*x*x - diff(y(x),x)*x + y(x), y(x),
hint=’nth_linear_euler_eq_homogeneous’)
>>> solu

Eq(y(x), Cl*sqrt(x) + C2*x)

1
ie., y(x) =Cizs + Cyx. Applying boundary conditions, we have

y(@) = (o V).

3. (Practice) Solve
a) 22y —zy' +(1+7%)y=0, y(1)=1, y(Ve)=ve
b) a?y"+3xy'+(1+7%)y=0, y(1)=1, y(Ve)=\e
Solution:

a) The general solution is

>>> from sympy import pi
>>> solu = dsolve(diff(y(x),x,x)*x*xx - diff(y(x),x)*x +
(1+pixpi) *y(x), y(x), hint=’nth_linear_euler_eq_homogeneous’)



>>> solu

Eq(y(x), x*(Cl*sin(pi*log(x)) + C2*cos(pi*log(x))))
ie., y(x) = Ciz sin(w log ) + Cs x cos(w log ). Applying boundary conditions, we
have

y(x) = xsin(rlogz) + x cos(wlog z).

b) The general solution is

>>> solu = dsolve(diff(y(x),x,x)*x*x + diff (y(x),x)*3*x +
(1+pixpi) *y(x), y(x), hint=’nth_linear_euler_eq_homogeneous’)

>>> solu

Eq(y(x), (Cilxsin(pix*log(x)) + C2xcos(pix*log(x)))/x)

ie., y(z) = C’lé sin(m log x) + Co % cos(m log x). Applying boundary conditions, we
have

y(z) = gsin(w log ) + g cos(mlog ).

4. (Practice) Solve
a) 2®y" —xy'+y=0, y(1)=1, y'(1)=0
b) 422y"+y=0, y(1)=1, yle)=0
Solution:

a) The general solution is

>>> solu = dsolve(diff (y(x),x,x)*x*x - diff(y(x),x)*x + y(x), yx),
hint=’nth_linear_euler_eq_homogeneous’)

>>> solu
Eq(y(x), x*(C1 + C2*log(x)))

ie., y(x) =Ci1x +Coxlogx. Applying initial conditions, we have
y(zr) = z—xlogzx.

b) The general solution is

>>> solu = dsolve(diff (y(x),x,x)*4*x*x + y(x), y(x),
hint=’nth_linear_euler_eq_homogeneous’)

>>> solu

Eq(y(x), sqrt(x)*(C1 + C2*log(x)))

1 1
ie., y(x)=Crz2 + Cyx2log x. Applying boundary conditions, we have

y(@) = —a (logz — 1),



