Solutions to "Week 07 Worksheet"*

Cauchy-Euler Equations

by Xiaoyu Wei

Web: wei.wxyzg.com

Math 2352-Spring 2016

1. (Demonstration) Solve

a)
$$x^2 y'' + x y' - y = 0;$$
 $y(0) = 0, y(1) = 1$
b) $x^2 y'' - x y' + (1 + \pi^2/4) y = 0;$ $y(1) = 1, y(e) = e$
c) $x^2 y'' + 3 x y' + y = 0;$ $y(1) = 1, y(e) = 1$

Solution: We provide three methods that are powerful enough to deal with general Cauchy-Euler equations. Each problem is solved using one of them respectively.

a) [Solving through trial solution]

We may directly look for solutions of the form $y(x) = x^r$. For this kind of functions, we have

$$\begin{array}{rcl} x\,y' &=& r\,y,\\ x^2y'' &=& r(r-1)y \end{array}$$

Plugging into the ODE,

$$[r(r-1) + r - 1]y(x) = 0, \quad \forall \text{possible } x.$$

Then we have

$$(r+1)(r-1) = 0$$

 $r = \pm 1.$

Now we have two independent solutions to the ODE, $y_1(x) = x$ and $y_2(x) = \frac{1}{x}$. Thanks to the linearity of the equation, any solution to it can be written as

$$y(x) = C_1 x + C_2 \frac{1}{x}, \quad C_{1,2} \in \mathbb{R}.$$

Taking advantage of the boundary conditions, we have

$$C_2 = 0,$$

 $C_1 = 1.$

^{*.} This document has been written using the GNU T_EX_{MACS} text editor (see www.texmacs.org).

So the solution to the Cauchy problem should be

$$y(x) = x.$$

b) [Solution through change of variables]

Apply a change of variables by letting

$$t = \ln x$$

And the solution is now a function dependent on t,

$$y(x) = y(e^t) \triangleq \Phi(t).$$

Differentiating,

$$y'(x) = \Phi'(t) \frac{1}{x},$$

$$y''(x) = \Phi''(t) \frac{1}{x^2} + \Phi'(t) \left(-\frac{1}{x^2}\right)$$

$$= [\Phi''(t) - \Phi'(t)] \frac{1}{x^2}.$$

Substitute into the ODE, we have

$$\Phi''(t) - 2\Phi'(t) + (1 + \pi^2/4) \Phi(t) = 0.$$

And the boundary conditions

$$\begin{aligned} 1 &= y(1) &= \Phi(0), \\ e &= y(e) &= \Phi(1) \end{aligned}$$

Now the equation is of constant coefficients and can be easily solved using its characteristic polynomial

$$\begin{array}{rcl} r^2 - 2r + (1 + \pi^2/4) &=& 0 \\ \\ r &=& 1 \pm i \frac{\pi}{2}. \end{array}$$

Then

$$\Phi(t) = C_1 e^{\left(1+i\frac{\pi}{2}\right)t} + C_2 e^{\left(1-i\frac{\pi}{2}\right)t}, \quad C_{1,2} \in \mathbb{C}.$$

Making use of the boundary conditions

$$\begin{aligned} &1 = \Phi(0) &= C_1 + C_2, \\ &e = \Phi(1) &= C_1 e^{\left(1 + i\frac{\pi}{2}\right)} + C_2 e^{\left(1 - i\frac{\pi}{2}\right)}. \end{aligned}$$

The second equation is equivalen to

$$C_1 - C_2 = -i.$$

So we have $C_1 = \frac{1-i}{2}, C_2 = \frac{1+i}{2}$, thus

$$\Phi(t) = C_1 e^{(1+i\frac{\pi}{2})t} + C_2 e^{(1-i\frac{\pi}{2})t}$$

$$= e^t \left[C_1 e^{i\frac{\pi}{2}t} + C_2 e^{-i\frac{\pi}{2}t} \right]$$

$$= e^t \frac{1}{2} \left[(C_1 + C_2) \left(e^{i\frac{\pi}{2}t} + e^{-i\frac{\pi}{2}t} \right) + (C_1 - C_2) \left(e^{i\frac{\pi}{2}t} - e^{-i\frac{\pi}{2}t} \right) \right]$$

$$= e^t \left[\cos\left(\frac{\pi}{2}t\right) + \sin\left(\frac{\pi}{2}t\right) \right].$$

Transform back to $x = e^t$, we have

$$y(x) = x \left[\cos\left(\frac{\pi}{2}\ln x\right) + \sin\left(\frac{\pi}{2}\ln x\right) \right], \quad x > 0.$$

c) [Series solution]

As seen in a), solutions to Cauchy-Euler equations may contain functions like $\frac{1}{x}$ that cannot be expanded at x = 0. However, series solutions may still be found by the so-called Frobenius method (Laurent series), simply by assuming a solution of the form

$$y(x) = x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}$$
$$= \sum_{n=0}^{\infty} a_{n} x^{n+r}.$$

In addition, we assume that $a_0 \neq 0$, this does not affect generality since we can always adjust r to achieve that for any nonzero series. By doing so we can fix r to be certain values (removing null space). Then we have

$$\begin{array}{rcl} x\,y' &=& \sum_{n=0}^{\infty} \,\,(n+r)\,a_n x^{n+r},\\ x^2 y'' &=& \sum_{n=0}^{\infty} \,\,(n+r)(n+r-1)a_n x^{n+r}. \end{array}$$

Plugging into the ODE, we have

$$\sum_{n=0}^{\infty} [(n+r)(n+r-1)a_n + 3(n+r)a_n + a_n]x^{n+r} = 0, \quad \forall \text{possible } x.$$

Therefore,

$$(n+r)(n+r-1)a_n + 3(n+r) a_n + a_n = 0, \quad \forall n \in \mathbb{N}$$

Setting n = 0, and noting $a_0 \neq 0$, we have a quadratic equation for r,

$$r^2 + 2r + 1 = 0$$

 $r = -1.$

Plugging into the recurrence relation,

$$n^2 a_n = 0, \quad \forall n \ge 1.$$

Note that this is a case where we have repeated roots. One solution is thus what we started out looking for

$$y_1(x) = x^{-1} \sum_{n=0}^{\infty} a_n x^n$$
$$= \frac{a_0}{x}.$$

While the other one is of the form

$$y_2(x) = y_1(x) \log x + x^r \sum_{n=1}^{\infty} a_n x^n.$$

Note that the term n = 0 is ommitted as it would just give a multiple of $y_1(x)$. Therefore,

$$y_2(x) = a_0 \frac{\log x}{x}.$$

Now, the general solution is

$$y(x) = C_1 \frac{1}{x} + C_2 \frac{\log x}{x}, \quad C_{1,2} \in \mathbb{R}.$$

Using the boundary conditions

$$\begin{array}{rcl} 1 = y(1) & = & C_1 \\ 1 = y(e) & = & \frac{C_1}{e} + \frac{C_2}{e} \end{array}$$

we have $C_1 = 1, C_2 = e - 1$. So

$$y(x) = \frac{1}{x} + (e-1)\frac{\log x}{x}.$$

Remark 1. The "characteristic equations" w.r.t. r from all three methods above are the same.

Remark 2. When there are repeated root, one should look for

- i. First method: $x^r \log x$, $x^r (\log x)^2$,...
- ii. Second method: $t e^{rt}, t^2 e^{rt}, \dots$
- iii. Third method: $y_2(x) = y_1(x) \log x + x^r \sum_{n=1}^{\infty} a_n x^n \dots$

Remark 3. The series solution method is the most powerful one, which can deal with more general equations of the form

$$x^{2} y'' + x p(x) y' - q(x) y = 0$$

with p(x), q(x) expandable into Taylor series at x = 0. However, the powerfulness comes with a price. In addition to dealing with repeated roots, one also need to deal with another special case where the two roots are differed by an integer, $r_1 - r_2 = N$, $N \in \mathbb{Z}^+$ similarly to the repeated-root case.

2. (Practice) Solve

a)
$$x^2 y'' - 2x y' + 2y = 0$$
, $y'(0) = 1$, $y(1) = 0$

b)
$$2x^2y'' - xy' + y = 0$$
, $y(1) = 0$, $y(4) = 1$

Solution:

a) The general solution is

i.e., $y(x) = C_1 x + C_2 x^2$. Applying boundary conditions, we have

$$y(x) = -(x-1)x.$$

b) The general solution is

```
>>> solu = dsolve(diff(y(x),x,x)*2*x*x - diff(y(x),x)*x + y(x), y(x),
    hint='nth_linear_euler_eq_homogeneous')
>>> solu
    Eq(y(x), C1*sqrt(x) + C2*x)
```

i.e., $y(x) = C_1 x^{\frac{1}{s}} + C_2 x$. Applying boundary conditions, we have

$$y(x) = \frac{1}{2}(x - \sqrt{x}).$$

3. (Practice) Solve

a) $x^2 y'' - x y' + (1 + \pi^2) y = 0$, y(1) = 1, $y(\sqrt{e}) = \sqrt{e}$ b) $x^2 y'' + 3x y' + (1 + \pi^2) y = 0$, y(1) = 1, $y(\sqrt{e}) = \sqrt{e}$

Solution:

a) The general solution is

```
>>> from sympy import pi
>>> solu = dsolve(diff(y(x),x,x)*x*x - diff(y(x),x)*x +
        (1+pi*pi)*y(x), y(x), hint='nth_linear_euler_eq_homogeneous')
```

>>> solu

Eq(y(x), x*(C1*sin(pi*log(x)) + C2*cos(pi*log(x))))

i.e., $y(x) = C_1 x \sin(\pi \log x) + C_2 x \cos(\pi \log x)$. Applying boundary conditions, we have

$$y(x) = x \sin(\pi \log x) + x \cos(\pi \log x).$$

b) The general solution is

```
>>> solu = dsolve(diff(y(x),x,x)*x*x + diff(y(x),x)*3*x +
        (1+pi*pi)*y(x), y(x), hint='nth_linear_euler_eq_homogeneous')
>>> solu
```

```
Eq(y(x), (C1*sin(pi*log(x)) + C2*cos(pi*log(x)))/x)
```

i.e., $y(x) = C_1 \frac{1}{x} \sin(\pi \log x) + C_2 \frac{1}{x} \cos(\pi \log x)$. Applying boundary conditions, we have

$$y(x) = \frac{e}{x}\sin(\pi\log x) + \frac{e}{x}\cos(\pi\log x)$$

4. (Practice) Solve

a)
$$x^2 y'' - x y' + y = 0$$
, $y(1) = 1$, $y'(1) = 0$
b) $4x^2 y'' + y = 0$, $y(1) = 1$, $y(e) = 0$

Solution:

a) The general solution is

```
>>> solu = dsolve(diff(y(x),x,x)*x*x - diff(y(x),x)*x + y(x), y(x),
hint='nth_linear_euler_eq_homogeneous')
>>> solu
Eq(y(x), x*(C1 + C2*log(x)))
```

i.e., $y(x) = C_1 x + C_2 x \log x$. Applying initial conditions, we have

$$y(x) = x - x \log x.$$

b) The general solution is

```
>>> solu = dsolve(diff(y(x),x,x)*4*x*x + y(x), y(x),
    hint='nth_linear_euler_eq_homogeneous')
>>> solu
Eq(y(x), sqrt(x)*(C1 + C2*log(x)))
```

i.e., $y(x) = C_1 x^{\frac{1}{2}} + C_2 x^{\frac{1}{2}} \log x$. Applying boundary conditions, we have

$$y(x) = -\sqrt{x} (\log x - 1).$$