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1. (Demonstration) Model the following �rst-order linear ode for y= y(x):

x y 0+ y= ex; y(1)=0.

Solution: This problem is associated with an exact �rst-order ODE. To see that, rewirte
the eqaution as

xdy+(y¡ ex)dx=0: (1)

Since @

@x
(x) =

@

@y
(y ¡ ex) = 1, the equation (1) is said to be exact, i.e., a scalar potential

H(x; y) can be de�ned, s.t.

H(x; y)= c

is the general solution to the ODE, where c is a constant. In particular,

H(x; y)=

Z
xdy+(y¡ ex)dx=x y¡ ex+C;

where C the constant of integration, which can be set as 0 without loss of generality. Then
the solution is

x y¡ ex= c;

with c determined by initial conditions c=H(1; 0)=¡e.

Therefore, the solution to the I.V.P. is

y=
ex¡ e
x

:

2. (Practice) Solve linear odes for y= y(x).

a) x2 y 0=1¡ 2 x y; y(1)=2

b) x4 y 0+4x3 y= e¡x; y(1)=¡1/e

c) y 0+2 x y=x; y(0)=1/2

d) (1+ x2) y 0+2x y=2x; y(0)=0

e) y 0+� y= a+ b e¡�x; y(0)=0 (�> 0)

�. This document has been written using the GNU TEXMACS text editor (see www.texmacs.org).
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Solution: a), b), d) are exact, c) is separable, and e) can be made exact by multiplying
with e�x. Solve them as demonstrated above (for c, refer to the previous worksheet) and
check your answers:

Sage] y = function('y')(x)

Sage] ### For a) ###

Sage] de1 = x^2*diff(y,x) - 1 + 2*x*y

Sage] simplify( desolve(de1, y, ics=[1,2]) )

x+1
x2

Sage] ### For b) ###

Sage] de2 = x^4*diff(y,x) + 4*x^3*y - exp(-x)

Sage] simplify( desolve(de2, y, ics=[1,-1/e]) )

¡e
(¡x)

x4

Sage] ### For c) ###

Sage] de3 = diff(y,x) + 2*x*y - x

Sage] simplify( desolve(de3, y, ics=[0,1/2]) )

1
2

Sage] ### For d) ###

Sage] de4 = (1+x^2)*diff(y,x) + 2*x*y - 2*x

Sage] simplify( desolve(de4, y, ics=[0,0]) )

x2

x2+1

Sage] ### For e) ###

Sage] l = var('l', latex_name=r'\lambda')

Sage] var('a','b')

Sage] assume(l>0)

Sage] de5 = diff(y,x) + l*y - a - b*exp(-l*x)

Sage] simplify( desolve(de5, y, ics=[0,0], ivar=x) )¡
b � x+ a e(�x)¡ a

�
e(¡�x)

�

Remark 1. Checklist for solving �rst order ODE's y 0=F (x; y):

I. Is it separable? F (x; y)=
?
X(x)Y (y) (Week 01's demo)

II. Is it exact in obvious ways? (Week 02's demo)

III. If not separable nor exact, try to �nd an integrating factor:

i. Is it linear? If it is, i.e., of the form y 0 + p(x) y = q(x), then an integrating
factor is

M(x)= e
R
p(x)dx:

(All �rst order linear ODE's can be solved in this way).

ii. Otherwise, try to solve the equations for integrating factors (sometimes it is
easier with tricks like change of variables, but sometimes it is as hard as solving
the orginal ODE).

3. (Practice) Suppose that a sum S0 is invested at an annual rate of return r compounded
continuously.

a) Find the T required for the original sum to double in value as a function of r.
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b) Determine T if r=7%.

c) Find the return rate that must be achieved if the initial investment is to double in
8 years.

Solution: Denote y(x) to be the total value of the initial investment and the interest, as
a function of time x, such that y(0) = S0. Then since the rate of return is compounded
continuously, the model of capital growth can be written as8<: y 0 = r y

y(0) = S0

:

Solving this system yields y(x)=S0 erx.

Sage] y = function('y')(x)

Sage] var('r','S0')

Sage] de = diff(y,x) - r*y

Sage] simplify( desolve(de, y, ics=[0,S0], ivar=x) )

S0 e
(rx)

Sage] numerical_approx( log(2)/0.07 )

9.90210257942779

Sage] numerical_approx( log(2)/8 )

0.0866433975699932

Sage]

Now, we have enough power to answer the questions:

a) T should be the solution to the equation y(T )= 2S0, i.e.

S0 e
rT =2S0;

yielding T = ln 2
r
.

b) Plugging in, we have T = ln 2
0.07 � 9.9.

c) r should be the solution to the equation y(8)=2S0, i.e.

S0 e
8r=2S0;

yielding r= ln 2
8
� 8.7%.

4. (Practice) A home buyer can a�ord to spend no more than $ 800 /month on mortgage
payments. Suppose that the interest rate is 9% and that the term of the mortgage is 20
years. Assume that interest is compounded continuously and that payments are also made
continuously.

1. Determine the maximum amount that this buyer can a�ord to borrow.

2. Determine the total interest paid during the term of the mortgage.

Solution: Denote y(x) the total amount that this buyer owes as a function of time x, such
that y(0)=M being the amount being borrowed at the time of buying the house. Then since
the rate of interest is compounded continuously and that the payments are also continuous,
the model of debt paying-o� can be written as8<: y 0 = 0.09 y¡ k

y(0) = M
;

3



where k is the annual amount of payment, and k6 800� 12. Solving this gives

y(x)=M

�
1¡ k/M

0.09

�
e0.09x+

k
0.09

:

Sage] y = function('y')(x)

Sage] var('M','k')

Sage] de = diff(y,x) - 0.09*y + k

Sage] simplify( desolve(de, y, ics=[0,M], ivar=x) )

Me

�
9

100 x
�
¡ 100

9
k e

�
9

100 x
�
+

100
9

k

Sage] numerical_approx( 800*12/0.09 * (exp(1.8)-1)/exp(1.8) )

89034.7852563641

Sage] numerical_approx( 20 - 1/0.09 * (exp(1.8)-1)/exp(1.8) )

10.7255432024621

Sage] numerical_approx( 800*12 * (20 - 1/0.09*(exp(1.8)-1)/exp(1.8)) )

102965.214743636

a) The fact that the mortgage being paid o� in 20 years indicates y(20)= 0, i.e.

M

�
1¡ k/M

0.09

�
e1.8+

k
0.09

=0:

It is equivalent to

M =
k(e1.8¡ 1)
0.09 e1.8

:

Clearly, the maximum of M is attained when the buyer pays as much as possible
each month, i.e., when k= 800� 12.

max
k

M � 89034.8:

b) The total interest paid I equals to the total payment substracts the initial debt,

I = 20 k¡M

= k

�
20¡ e1.8¡ 1

0.09 e1.8

�
� 10.73 k:

And when k= 800� 12, this amounts to $102965.2.

5. (Practice) Find the escape velocity for a body projected upward with an initial velocity
v0 from a point x0= � R above the center of the earth, where R is the radius of the earth
and � is a constant greater than unity. Neglect air resistance. Find the initial altitude from
which the body must be launched in order to reduce the escape velocity to 85% of its value
at the earth's surface.
Solution: Since the object is projected upward, the motion is actually 1D. From Newton's
law of universal gravitation, the force applied to the body by the earth is

F =¡GmM
r2

;

where G is the gravitational constant, m is the mass of the object, M is the mass of Earth,
r is the distance bewteen the object and the center of the earth.
On the other hand, considering the motion as a function of time t, from Newton's second
law of motion,

F =mr 00;
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where r 00= d2r

dt2
, we have

r 00=¡GM
r2
:

The initial conditions are initial position and initial velocity

r(0)= r0; r 0(0)= v0:

This ODE is second-order and not easy to solve, but we can make a change of variables to
simplify it. Noticing that time t is not explicitly included in the equation, we may use r as
new independent variable, and v= dr

dt
as new dependent variable, then

r 00=
dv
dt
=
dv
dr

dr
dt
= v 0 v:

Note the di�erence in meaning of �prime� here. The ODE becomes �rst-order and separable,

v v 0=¡GM

r2
:

In the mean while, the initial condition becomes v(r0) = v0.

Sage] v = function('v')(r)

Sage] var('G','M','r','r0','v0')

(G, M, r, r0, v0)

Sage] de = v*diff(v,r) + G*M/r^2

Sage] simplify( desolve(de, v, ics=[r0,v0], ivar=r) )

¡ v(r)2

2 GM
=¡r r0 v0

2¡ 2 GM (r¡ r0)
2 GMrr0

The solution is thus

v2= v0
2¡ 2 GM

r¡ r0
r r0

: (2)

Initially, the object is projected with v0>0. To escape, the velocity must never decrease to
zero, that is,

v0
2¡ 2 GM

r¡ r0
r r0

> 0; 8r> r0;
so

v0
2> 2 GM

1

r0
:

That is to say, the escape velocity is ve=
2GM

r0

q
. With r0= �R, we have the equation

2GM
�R

r
= 0.85

2GM
R

r
;

yielding the value of � to be 1.384.
Sage] numerical_approx(1/0.85^2)

1.38408304498270

Sage] numerical_approx((1/0.85^2 - 1)*6371)

2446.99307958478

So the initial altitude should be

(� ¡ 1)R� 0.384� 6371� 2447 (km):

Remark 2. The solution (2) is nothing but energy conservation

1
2
mv0

2¡GMm
r0

=
1
2
mv2¡GMm

r
:
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Solution is much more intuitive to obtain given this insight.

6. (Practice) A tank initially contains an amount S (liters) of pure water. A mixture con-
taining a concentration  (grams/liter) of salt enters the tank at a rate r (liters/minute),
and the well-stirred mixture leaves the tank at the same rate.

a) Determine a di�erential equation for the amount of saltM(t) (grams) in the tank at
any time t by writing an equation for M (t+� t).

b) Solve this di�erential equation using an integrating factor.

c) Find the limiting amount of salt in the tank as t!1, and show that this corresponds
to the solution obtained by setting dM /d t=0.

Solution:

a) Since in�ow rate equals to out�ow rate, the amount of liquid in the container is
constant. Assuming the concentration of salt is constant within in�nitesimal �t, we
have

M(t+�t)¡M(t)=  r�t¡M(t)
S

r�t;

that is,
M(t+�t)¡M(t)

�t
=  r¡M(t)

S
r:

Take the limit �t¡! 0,
M 0(t)
r

=  ¡M(t)
S

:

The ODE above is subject to the initial condition M(0) = 0, since initially there is
only pure water in the tank.

b) Using the integrating factor

f(t)= e
R r

S
dt
= e

rt

S ;

the ODE becomes exact

e
rt

S
M 0

r
=  e

rt

S ¡ e
rt

S

S
M:

This is equivalent to �
e
rt

S M
�0
=  r e

rt

S ;

and the solution is

M(t)= e
¡rt

S

Z
0

t

 r e
rz

S dz=S
�
1¡ e¡

t

S

�
:

Sage] M = function('M')(t)

Sage] var('S','gamma','r','t')

(S, gamma, r, t)

Sage] de = diff(M,t)/r + M/S == gamma

Sage] simplify( desolve(de, M, ics=[0,0], ivar=t) )�
S e

¡ rt
S

�
¡S

�
e
¡
¡rt

S

�
c) Setting t¡!1, M(t)¡!S . On the other hand, in the ODE, setting M 0=0 also

yields

0=  ¡M
S

=) M =S:

7. (Practice) A spherical raindrop evaporates at a rate proportional to its surface area. By
�nding and solving a di�erential equation for the radius of the drop, show that the radius
decreases linearly with time. Use the following facts to help you solve this problem:
(i) The volume of a raindrop is 4

3
� r3.
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(ii) The surface area of a raindrop is 4 � r2.
(iii) The time-derivative of the volume is proportional to the surface area.
Solution: Denote r(t) the radius of the drop, and assmue the rate of evaporation is � times
of its surface area, s.t.

d
dt

�
4
3
�r3

�
= � (4�r2):

That is,

r2 r 0= �r2 =) r 0= �:

Therefore, the radius decreases linearly with time in this model.
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