MATH 2352 Problem Sheet 11

by Xiaoyu Wei

Created on May 4, 2015

[Problems] 8.1: 12(a,c), 23; 8.2: 4(b), 22; 8.3: 1(b).

8.1 - 12. For the initial value problem

$$y' = (y^2 + 2ty)/(3+t^2),$$

 $y(0) = 0.5,$

find the approximate values of the solution at t = 0.5, 1.0, 1.5 and 2.0.

(a) Use the Euler method with h = 0.025.

(c) Use the backward Euler method with h = 0.025.

8.1 - 23. In this problem we discuss the global truncation error associated with the Euler method for the initial value problem y' = f(t, y), $y(t_0) = y_0$. Assuming that the functions f and f_y are continuous in a closed, bounded region R of the ty-plane that includes the point (t_0, y_0) , it can be shown that there exists a constant L such that $|f(t, y) - f(t, \tilde{y})| < L|y - \tilde{y}|$, where (t, y) and (t, \tilde{y}) are any two points in R with the same t coordinate. Further, we assume that f_t is continuous, so the solution ϕ has a continuous derivative.

(a) Using

$$\phi(t_{n+1}) = \phi(t_n) + \phi'(t_n) h + \frac{1}{2} \phi''(\bar{t}_n) h^2,$$

show that

$$|E_{n+1}| \leq |E_n| + h |f[t_n, \phi(t_n)] - f(t_n, y_n)| + \frac{1}{2} h^2 |\phi''(\bar{t}_n)|$$

$$\leq \alpha |E_n| + \beta h^2,$$
(1)

where $\alpha = 1 + hL$ and $\beta = \max |\phi''(t)|/2$ on $t_0 \leq t \leq t_n$.

(b) Assume that if $E_0 = 0$ and if $|E_n|$ satisfies the Eqn (1), then $|E_n| \leq \beta h^2(\alpha^n - 1)/(\alpha - 1)$ for $\alpha \neq 1$. Use this result to show that

$$|E_n| \leqslant \frac{(1+hL)^n - 1}{L} \beta h.$$
(2)

Eqn (2) gives a bound for $|E_n|$ in terms of h, L, n and β . Notice that for a fixed h, this error bound increases with increasing n; that is, the error bound increases with distance from the starting point t_0 .

(c) Show that $(1+hL)^n \leq e^{nhL}$; hence

$$|E_n| \leqslant \frac{e^{nhL} - 1}{L} \beta h.$$
(3)

If we select an ending point T greater than t_0 and then choose the step size h so that n steps are required to traverse the interval $[t_0, T]$, then $nh=T-t_0$, and

$$|E_n| \leqslant \frac{e^{(T-t_0)L} - 1}{L} \beta h = Kh.$$

$$\tag{4}$$

Note that K depends on the length $T - t_0$ of the interval and on the constants L and β that are determined from the function f.

8.2 - 4. For the initial value problem

$$y' = 2t + e^{-ty},$$

 $y(0) = 1,$

find the approximate values of the solution at t = 0.1, 0.2, 0.3 and 0.4. Compare the results with those obtained by the Euler method and with the exact solution (if available).

(b) Use the Euler method with h = 0.025.

8.2 - 22. The modified Euler formula for the initial value problem $y' = f(t, y), y(t_0) = y_0$ is given by

$$y_{n+1} = y_n + h f \bigg[t_n + \frac{1}{2}h, y_n + \frac{1}{2}h f(t_n, y_n) \bigg].$$

Show that the local truncation error in the modified Euler formula is proportional to h^3 .

8.3 - 1. For the initial value problem

$$y' = 2 + t - y,$$

 $y(0) = 1,$

find the approximate values of the solution at t = 0.1, 0.2, 0.3 and 0.4. Compare the results with those obtained by the numerical method and with the exact solution (if available).

(b) Use the Runge-Kutta method with h = 0.05.