MATH 2352 Problem Sheet 10

BY XIAOYU WEI

Created on April 25, 2015

[Problems] 7.7: 6, 12, 13; 7.8: 7, 18, 22 7.9: 1, 3.

7.7 - 6. For

$$x' = \begin{pmatrix} -1 & 1 \\ -4 & -1 \end{pmatrix} x,$$

- (a) Find a fundamental matrix for the given system of equations.
- (b) Also find the fundamental matrix $\Phi(t)$ satisfying $\Phi(0) = I$.

7.7 - 12. Solve the initial value problem

$$x' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} x,$$

$$\boldsymbol{x}(0) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

by using the fundamental matrix $\Phi(t)$ for the following system of equations:

$$x' = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} x.$$

7.7 - 13. Show that $\Phi(t) = \Psi(t) \Psi^{-1}(t_0)$, where $\Phi(t)$ and $\Psi(t)$ are as defined in this section (or as in the slides).

7.8 - 7. Consider the initial value problem

$$x' = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix} x,$$

$$\boldsymbol{x}(0) = \begin{pmatrix} 4 \\ 2 \end{pmatrix}.$$

- (a) Find the solution.
- (b) Draw the trajectory of the solution in the x_1x_2 -plane, and also draw the graph of x_1 versus t.

1

7.8 - 18. Consider the system

$$x' = Ax = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4 \end{pmatrix} x.$$
 (1)

(a) Show that r=2 is an eigenvalue of algebraic multiplicity 3 of the coefficient matrix \boldsymbol{A} and that there is only one corresponding eigenvector, namely,

$$\boldsymbol{\xi}^{(1)} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

- (b) Using the information in part (a), write down one solution $\mathbf{x}^{(1)}(t)$ of the system (1). There is no other solution of the purely exponential form $\mathbf{x} = \boldsymbol{\xi} e^{rt}$.
- (c) To find a second solution, assume that $x = \xi t e^{2t} + \eta e^{2t}$. Show that ξ and η satisfy the equations

$$(A-2I) \xi = 0,$$

$$(A-2I) \eta = \xi.$$

Since $\boldsymbol{\xi}$ has already been found in part (a), solve the second equation for $\boldsymbol{\eta}$. Neglect the multiple of $\boldsymbol{\xi}^{(1)}$ that appears in $\boldsymbol{\eta}$, since it leads only to a multiple of the first solution $\boldsymbol{x}^{(1)}$. Then write down a second solution $\boldsymbol{x}^{(2)}(t)$ of the system (1).

(d) To find a third solution, assumen that $\mathbf{x} = \boldsymbol{\xi} (t^2/2) e^{2t} + \boldsymbol{\eta} t e^{2t} + \boldsymbol{\zeta} e^{2t}$. Show that $\boldsymbol{\xi}$, $\boldsymbol{\eta}$ and $\boldsymbol{\zeta}$ satisfy the equations

$$(A-2I) \xi = 0,$$

$$(A-2I) \eta = \xi,$$

$$(A-2I) \zeta = \eta.$$

The first two equations are the same as in part (c), so solve the third equation for ζ , again neglecting the multiple of $\xi^{(1)}$ that appears. Then write down a third solution $x^{(3)}(t)$ of the system (1).

- (e) Write down a fundamental matrix $\Psi(t)$ for the system (1).
- (f) Form a matrix T with the eigenvector $\boldsymbol{\xi}^{(1)}$ in the first column and the generalized eigenvector $\boldsymbol{\eta}$ and $\boldsymbol{\zeta}$ in the second and third solumns. Then find T^{-1} and form the product $J = T^{-1}AT$. The matrix J is the Jordan form of A.

7.8 - 22. Let

$$\boldsymbol{J} = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix},$$

where λ is an arbitrary real number.

- (a) Find J^2 , J^3 , and J^4 .
- (b) Use an inductive argument to show that

$$\boldsymbol{J}^n \; = \; \left(\begin{array}{ccc} \lambda^n & n \, \lambda^{n-1} & \left[n(n-1)/2 \right] \lambda^{n-2} \\ 0 & \lambda^n & n \, \lambda^{n-1} \\ 0 & 0 & \lambda^n \end{array} \right) \! .$$

- (c) Determine $e^{\mathbf{J}t}$.
- (d) Note that if you choose $\lambda=2$, then the matrix \boldsymbol{J} in this problem is the same as the matrix \boldsymbol{J} in Problem 18(f), form the product $\boldsymbol{T}e^{\boldsymbol{J}t}$ with $\lambda=2$. The resulting matrix is the same as the fundamental matrix $\boldsymbol{\Psi}(t)$ in Problem 18(e).
- 7.9 1. Find the general solution of the given system of equations.

$$m{x}' = \left(egin{array}{cc} 2 & 3 \ -1 & -2 \end{array}
ight) m{x} + \left(egin{array}{c} e^t \ t \end{array}
ight).$$

7.9 - 3. Find the general solution of the given system of equations.

$$x' = \begin{pmatrix} 2 & 1 \\ -5 & -2 \end{pmatrix} x + \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}.$$