MATH 2352 Problem Sheet 09

BY XIAOYU WEI

Created on April 17, 2015

[Problems] 7.1: 5, 6, 8; 7.4: 4, 9; 7.5: 15, 17, 19; 7.6: 7, 15(a, b);

7.1 - 5. Transform the given equation into a system of first order equations.

$$u'' + 2u' + 4u = 2\cos 3t$$
,

$$u(0) = 1,$$
 $u'(0) = -2.$

7.1 - 6. Transform the given equation into a system of first order equations.

$$u'' + p(t) u' + q(t) u = g(t),$$

$$u(0) = u_0, \qquad u'(0) = u'_0.$$

7.1 - 8. For

$$x_1' = 3x_1 - 2x_2,$$

$$x_2' = 2x_1 - 2x_2.$$

$$x_1(0) = 3,$$

$$x_2(0) = 1.$$

- (a) Transform the given system into a single equaion of second order.
- (b) Find x_1 and x_2 that also satisfy the given initial conditions.
- (c) Sketch the graph of the solution in the x_1x_2 -plane for $t \ge 0$.

7.4 - 4. If $x_1 = y$ and $x_2 = y'$, then the second order equation

$$y'' + p(t)y' + q(t)y = 0 (1)$$

corresponds to the system

$$x'_1 = x_2,$$

 $x'_2 = -p(t)x_2 - q(t)x_1.$ (2)

Show that if $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$ are fundamental set of solutions of Eqs.(2), and if $y^{(1)}$ and $y^{(2)}$ are a fundamental set of solutions of Eq.(1), then $W\big[y^{(1)},y^{(2)}\big]=c\,W\big[\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)}\big]$, where c is a nonzero constant.

Hint: $y^{(1)}(t)$ and $y^{(2)}(t)$ must be linear combinations of $x_{11}(t)$ and $x_{12}(t)$.

7.4 - 9. Let $x^{(1)}, ..., x^{(n)}$ be linearly independent solution of x' = P(t) x, where P is continuous on $\alpha < t < \beta$.

(a) Show that any solution x = z(t) can be written in the form

$$z(t) = c_1 x^{(1)}(t) + ... + c_n x^{(n)}(t)$$

for suitable constants $c_1, ..., c_n$.

(b) Show that the expression for the solution z(t) in part (a) is unique.

7.5 - 15. For

$$x' = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} x,$$

$$x(0) = (3,-1)^T.$$

Solve the initial value problem. Describe the behavior of the solution as $t \to \infty$.

7.5 - 17. For

$$x' = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{pmatrix} x,$$

$$x(0) = (2,0,3)^T.$$

Solve the initial value problem. Describe the behavior of the solution as $t \to \infty$.

7.5 - 19. The system $t\mathbf{x}' = \mathbf{A} \mathbf{x}$ is analogous to the second order Euler equation. Assuming that $\mathbf{x} = \boldsymbol{\xi} t^r$, where $\boldsymbol{\xi}$ is a constant vector, show that $\boldsymbol{\xi}$ and r must satisfy $(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = 0$ in order to obtain nontrivial solutions of the given differential equation.

7.6 - **7.** For

$$\boldsymbol{x}' = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix} \boldsymbol{x}.$$

Express the general solution of the given system of equations in terms of real-valued functions.

7.6 - **15**. For

$$x' = \begin{pmatrix} 2 & \alpha \\ -5 & -2 \end{pmatrix} x,$$

the coefficient matrix contains a parameter α .

- (a) Determine the eigenvalues in terms of α .
- (b) Find the critical value or values of α where the qualitative nature of the phase portrait for the system changes.