
MATH 2111 Matrix Algebra and Applications Week 13 Tutorial

1. Let u =

[
1
2

]
and v =

[
−1
1

]
. Suppose that w ∈ R2 is a vector such that u · w = −1 and

v ·w = 3, find w.

2. Express u · v in terms of ||u + v|| and ||u− v||.

3. Let ||u|| = ||v|| = ||w|| = 1 and u · v = v ·w = u ·w = 0. Find the values of:

(i) (5u + 3v − 2w) · u (ii) (5u + 3v − 2w) · (4u− 3v) (iii) ||5u + 3v − 2w||2.

4. Let u1 ⊥ v1 and u2 ⊥ v2. Do we always have (u1 + u2) ⊥ (v1 + v2)?

5. Let A be an m× n matrix.

(i) Show that Nul (ATA) = NulA.

(ii) Show that rank (ATA) = rankA.

(iii) If rankA = n, show that ATA is invertible.

[When A is m× n and rankA = n, the matrix B = (ATA)−1AT is called the pseudo-inverse
of A, satisfying BA = In.]

6. Check if the following sets are orthogonal:

(i) {
[

3
2

]
,

[
2
−3

]
} (ii) {

 1
2
2

 ,
 2

1
−2

 ,
 2
−2
1

} (iii) {


1
1
0
0
1

 ,


1
0
1
0
−1

 ,


1
−1
−1
1
0

 ,


1
−2
0
3
1

}.

7. Let A be an m× n matrix with orthogonal columns. What is special about ATA?

8. (i) Let W be a subspace of Rn. What is W ∩W⊥?

(ii) Let W1 ⊆W2. What is the relation between W⊥1 and W⊥2 ?

9. Given that S = {u1,u2,u3} is orthogonal and v ∈ SpanS. Find the number c2 such that
v = c1u1 + c2u2 + c3u3.

u1 =


1
2
1
−1

 , u2 =


1
1
−2
1

 , u3 =


3
−1
3
4

 , (i) v =


10
1
16
7

 (ii) v =


1
−1
1
2

 .
10. (Optional) Let V = P(R), the vector space of all real polynomials. Consider the inner product:

<p(t), q(t)>=

∫ 1

0
p(t)q(t)dt.

Let S = {1, t2, t4, t6, . . .}. Show that S⊥ = {0(t)} (the zero subspace of V ).

[So in this example (S⊥)⊥ = V 6= SpanS. Therefore, (S⊥)⊥ = SpanS need not be correct in
infinite-dimensional case. ]

11. Let {u1, . . . ,up} be an orthogonal/orthonormal set in Rn and let A be an n × n orthogonal
matrix. Is {Au1, . . . , Aup} again an orthogonal/orthonormal set?

12. Let A,B be n× n orthogonal matrices. Is (i) A+B (ii) AB always orthogonal?



13. Let A be an orthogonal matrix. What are the possible values of detA?

14. Find all possible 2× 2 orthogonal matrices in the form

[
1
3 x
y z

]
.

15. A rigid motion in Rn is a transformation M : Rn → Rn that preserves distances, namely:

||M(u)−M(v)|| = ||u− v|| for every u,v ∈ Rn.

Let T : Rn → Rn be defined as T (x) = M(x)−M(0).

(i) Show that T is also a rigid motion, and preserves lengths: ||T (x)|| = ||x||.
(ii) Show that T also preserves inner products: (Tx) · (Ty) = x · y.

(iii) Now show that T is linear and its standard matrix A is an orthogonal matrix.

[So, every rigid motion M in Rn can be written as M(0)+Ax: first an action by an orthogonal
matrix A, then a translation by adding M(0).]

16. Given that B is an orthogonal basis for W . Find projWv and dist(v,W ).

B = {


1
0
1
−1

 ,


1
1
0
1

}; (i) v =


2
−3
5
−8

 (ii) v =


1
0
−2
−1

 (iii) v =


2
1
0
2

 .
17. Let U , W be two subspaces of Rn such that projUv = projWv for every v ∈ Rn. Must we

have U = W?

18. Let W2 ⊆W1 ⊆ Rn be a hierarchy of subspaces and v ∈ Rn. Set v′ = projW2
(projW1

v). Is it
always true that v′ = projW2

v?

19. Let W1, W2 be any two subspaces of Rn and v ∈ Rn. Set v1 = projW2
(projW1

v) and
v2 = projW1

(projW2
v). Is it always true that v1 = v2?

20. Apply Gram-Schmidt process to the set of vectors {x1,x2,x3} in Rn:

x1 =


1
0
1
0
1

 , x2 =


1
1
1
0
1

 , x3 =


1
0
1
1
1

 .

Let W = Span {x1,x2,x3} and let u = (1, 2, a, 2, 1)T , where a is a real number. Find projWu.

When will the vector u lie inside W?

21. (Optional) Consider a k-dimensional subspace W of Rn. Let {w1, . . . ,wk} be an orthogonal
basis for W . Extend it to {w1, . . . ,wk,v1, . . . ,vn−k}, a basis for Rn. Apply Gram-Schmidt
process to change it to {w1, . . . ,wk,u1, . . . ,un−k}, an orthogonal basis for Rn. Show that
{u1, . . . ,un−k} is a basis for W⊥, and hence we have dimW + dimW⊥ = n = dimRn.

22. Let:

A =

 1 5
3 1
−2 4

 , b =

 4
−2
−3

 .
Find a least-squares solution to Ax = b.



23. Find an equation of the straight line that fits each of the following sets of points (xi, yi) the
best, in the sense of minimizing the square sum of y-distances.

(i) (1,−2), (3, 4), (5, 10) (ii) (1, 2), (2, 5), (3, 7) (iii) (2, 2), (3, 3), (6, 4), (9, 5).

Also write down the error of approximations as square sum of y-distances.

(i.e. error=
∑n

i=1[yi − (c+mxi)]
2.)

24. Find an equation of the quadratic polynomial that fits each of the following sets of points
(xi, yi) the best, in the sense of minimizing the square sum of y-distances.

(i) (1, 4), (2, 4), (3, 2), (4,−2) (ii) (−2, 1), (−1,−2), (1, 1), (2,−1), (3, 2).

Also write down the error of approximations as square sum of y-distances.

(i.e. error=
∑n

i=1[yi − (c0 + c1xi + c2x
2
i )]

2.)

25. Find an orthogonal diagonalization of the symmetric matrix:

A =

 0 1 1
1 0 1
1 1 0

 ,
namely, find an orthogonal matrix P such that P TAP is a diagonal matrix. Is A positive-
definite, negative-definite, or indefinite?

26. Let A be any m × n matrix. Show that both ATA and AAT are positive semi-definite
symmetric matrices.

[Remark: The non-negative square roots of the eigenvalues of ATA are called the singular
values of A. Read §7.4 for the important result on Singular Value Decomposition.]

Answers for checking:

1.

[
−7

3
2
3

]
.

2. 1
4{||u + v||2 − ||u− v||2}.

3. (i) 5 (ii) 11 (iii) 38.

4. No.

5. (i) Note that ||Ax||2 = xTATAx (ii) apply rank theorem

6. (i) Yes (ii) Yes (iii) No.

7. diagonal matrix.

8. (i) {0} (ii) W⊥2 ⊆W⊥1 .

9. (i) c2 = −2 (ii) c2 = 0.



10. For any p(t) ∈ S⊥, write p(t) = ant
n + . . . + a1t + a0. Use the orthogonality of p(t) with

{1, t2, t4, . . . , t2n} to write down an (n+ 1)× (n+ 1) homogeneous system on {an, . . . , a1, a0}
and claim that the system has unique zero solution.

11. Yes/Yes.

12. (i) No (ii) Yes.

13. ±1.

14.

[
1
3 −

√
8
3√

8
3

1
3

]
,

[
1
3

√
8
3√

8
3 −1

3

]
,

[
1
3

√
8
3

−
√
8
3

1
3

]
,

[
1
3 −

√
8
3

−
√
8
3 −1

3

]
.

15. (ii) consider ||T (x)− T (y)||2 − ||x− y||2 and note that ||u− v||2 = ||u||2 + ||v||2 − 2u · v
(iii) rewrite ||T (x + y)− T (x)− T (y)||2, ||T (cx)− c T (x)||2 into inner products and use (ii).
To show that ATA = In, consider (Aei) · (Aej) = ei · ej .

16. (i)


2
−3
5
−8

, 0 (ii)


0
0
0
0

,
√

6 (iii)


5
3
5
3
0
5
3

,
√

2
3 .

17. Yes.

18. Yes.

19. No.

20. u1 =


1
0
1
0
1

, u2 =


0
1
0
0
0

, u3 =


0
0
0
1
0

; projWu =


2+a
3
2

2+a
3
2

2+a
3

, a = 1.

21. First check that {u1, . . . ,un−k} ⊂ W⊥. l.i. is guaranteed. For spanness, let x ∈ W⊥, and
write x = c1w1 + . . . + ckwk + d1u1 + . . . + dn−kun−k. Use orthogonality to show that
c1 = . . . = ck = 0.

22.

[
2
7
1
7

]
.

23. (i) y = −5 + 3x, error = 0 (ii) y = −1
3 + 5

2x, error = 1
6 (iii) y = 3

2 + 2
5x, error= 1

5 .

24. (i) y = 2 + 3x− x2, error = 0 (ii) y = −1− 1
28x+ 9

28x
2, error = 47

7 .

25. (many choices) P =


1√
3
− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

, P TAP =

 2 0 0
0 −1 0
0 0 −1

; indefinite.

26. To determine the sign of eigenvalue λ in ATAx = λx, consider ||Ax||2 = xTATAx.


