MATH 2111 Matrix Algebra and Applications

- 1. Let $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Suppose that $\mathbf{w} \in \mathbb{R}^2$ is a vector such that $\mathbf{u} \cdot \mathbf{w} = -1$ and $\mathbf{v} \cdot \mathbf{w} = 3$, find \mathbf{w} .
- 2. Express $\mathbf{u} \cdot \mathbf{v}$ in terms of $||\mathbf{u} + \mathbf{v}||$ and $||\mathbf{u} \mathbf{v}||$.
- 3. Let $||\mathbf{u}|| = ||\mathbf{v}|| = ||\mathbf{w}|| = 1$ and $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} = 0$. Find the values of:

(i)
$$(5\mathbf{u} + 3\mathbf{v} - 2\mathbf{w}) \cdot \mathbf{u}$$
 (ii) $(5\mathbf{u} + 3\mathbf{v} - 2\mathbf{w}) \cdot (4\mathbf{u} - 3\mathbf{v})$ (iii) $||5\mathbf{u} + 3\mathbf{v} - 2\mathbf{w}||^2$.

- 4. Let $\mathbf{u}_1 \perp \mathbf{v}_1$ and $\mathbf{u}_2 \perp \mathbf{v}_2$. Do we always have $(\mathbf{u}_1 + \mathbf{u}_2) \perp (\mathbf{v}_1 + \mathbf{v}_2)$?
- 5. Let A be an $m \times n$ matrix.
 - (i) Show that $\operatorname{Nul}(A^T A) = \operatorname{Nul} A$.
 - (ii) Show that $\operatorname{rank}(A^T A) = \operatorname{rank} A$.
 - (iii) If rank A = n, show that $A^T A$ is invertible.

[When A is $m \times n$ and rank A = n, the matrix $B = (A^T A)^{-1} A^T$ is called the pseudo-inverse of A, satisfying $BA = I_n$.]

6. Check if the following sets are orthogonal:

(i)
$$\left\{ \begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} 2\\-3 \end{bmatrix} \right\}$$
 (ii) $\left\{ \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\}$ (iii) $\left\{ \begin{bmatrix} 1\\1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-2\\0\\3\\1 \end{bmatrix} \right\}$.

- 7. Let A be an $m \times n$ matrix with orthogonal columns. What is special about $A^T A$?
- 8. (i) Let W be a subspace of Rⁿ. What is W ∩ W[⊥]?
 (ii) Let W₁ ⊆ W₂. What is the relation between W₁[⊥] and W₂[⊥]?
- 9. Given that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ is orthogonal and $\mathbf{v} \in \text{Span } S$. Find the number c_2 such that $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3$.

$$\mathbf{u}_{1} = \begin{bmatrix} 1\\ 2\\ 1\\ -1 \end{bmatrix}, \ \mathbf{u}_{2} = \begin{bmatrix} 1\\ 1\\ -2\\ 1 \end{bmatrix}, \ \mathbf{u}_{3} = \begin{bmatrix} 3\\ -1\\ 3\\ 4 \end{bmatrix}, \quad (i) \ \mathbf{v} = \begin{bmatrix} 10\\ 1\\ 16\\ 7 \end{bmatrix} \quad (ii) \ \mathbf{v} = \begin{bmatrix} 1\\ -1\\ 1\\ 2 \end{bmatrix}.$$

10. (Optional) Let $V = \mathbb{P}(\mathbb{R})$, the vector space of all real polynomials. Consider the inner product:

$$<\!p(t),q(t)\!>=\int_0^1 p(t)q(t)dt$$

Let $S = \{1, t^2, t^4, t^6, \ldots\}$. Show that $S^{\perp} = \{0(t)\}$ (the zero subspace of V). [So in this example $(S^{\perp})^{\perp} = V \neq Span S$. Therefore, $(S^{\perp})^{\perp} = Span S$ need not be correct in infinite-dimensional case.]

- 11. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal/orthonormal set in \mathbb{R}^n and let A be an $n \times n$ orthogonal matrix. Is $\{A\mathbf{u}_1, \ldots, A\mathbf{u}_p\}$ again an orthogonal/orthonormal set?
- 12. Let A, B be $n \times n$ orthogonal matrices. Is (i) A + B (ii) AB always orthogonal?

- 13. Let A be an orthogonal matrix. What are the possible values of det A?
- 14. Find all possible 2×2 orthogonal matrices in the form $\begin{bmatrix} \frac{1}{3} & x \\ y & z \end{bmatrix}$.
- 15. A rigid motion in \mathbb{R}^n is a transformation $M : \mathbb{R}^n \to \mathbb{R}^n$ that preserves distances, namely:

$$||M(\mathbf{u}) - M(\mathbf{v})|| = ||\mathbf{u} - \mathbf{v}||$$
 for every $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be defined as $T(\mathbf{x}) = M(\mathbf{x}) - M(\mathbf{0})$.

- (i) Show that T is also a rigid motion, and preserves lengths: $||T(\mathbf{x})|| = ||\mathbf{x}||$.
- (ii) Show that T also preserves inner products: $(T\mathbf{x}) \cdot (T\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$.
- (iii) Now show that T is linear and its standard matrix A is an orthogonal matrix.

[So, every rigid motion M in \mathbb{R}^n can be written as $M(\mathbf{0}) + A\mathbf{x}$: first an action by an orthogonal matrix A, then a translation by adding $M(\mathbf{0})$.]

16. Given that \mathcal{B} is an orthogonal basis for W. Find $\operatorname{proj}_W \mathbf{v}$ and $\operatorname{dist}(\mathbf{v}, W)$.

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} \right\}; \quad (i) \mathbf{v} = \begin{bmatrix} 2\\-3\\5\\-8 \end{bmatrix} \quad (ii) \mathbf{v} = \begin{bmatrix} 1\\0\\-2\\-1 \end{bmatrix} \quad (iii) \mathbf{v} = \begin{bmatrix} 2\\1\\0\\2 \end{bmatrix}$$

- 17. Let U, W be two subspaces of \mathbf{R}^n such that $\operatorname{proj}_U \mathbf{v} = \operatorname{proj}_W \mathbf{v}$ for every $\mathbf{v} \in \mathbf{R}^n$. Must we have U = W?
- 18. Let $W_2 \subseteq W_1 \subseteq \mathbb{R}^n$ be a hierarchy of subspaces and $\mathbf{v} \in \mathbb{R}^n$. Set $\mathbf{v}' = \operatorname{proj}_{W_2}(\operatorname{proj}_{W_1}\mathbf{v})$. Is it always true that $\mathbf{v}' = \operatorname{proj}_{W_2}\mathbf{v}$?
- 19. Let W_1 , W_2 be any two subspaces of \mathbb{R}^n and $\mathbf{v} \in \mathbb{R}^n$. Set $\mathbf{v}_1 = \operatorname{proj}_{W_2}(\operatorname{proj}_{W_1}\mathbf{v})$ and $\mathbf{v}_2 = \operatorname{proj}_{W_1}(\operatorname{proj}_{W_2}\mathbf{v})$. Is it always true that $\mathbf{v}_1 = \mathbf{v}_2$?
- 20. Apply Gram-Schmidt process to the set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ in \mathbb{R}^n :

$$\mathbf{x}_{1} = \begin{bmatrix} 1\\0\\1\\0\\1 \end{bmatrix}, \quad \mathbf{x}_{2} = \begin{bmatrix} 1\\1\\1\\0\\1 \end{bmatrix}, \quad \mathbf{x}_{3} = \begin{bmatrix} 1\\0\\1\\1\\1\\1 \end{bmatrix}.$$

Let $W = \text{Span} \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ and let $\mathbf{u} = (1, 2, a, 2, 1)^T$, where *a* is a real number. Find $\text{proj}_W \mathbf{u}$. When will the vector \mathbf{u} lie inside W?

- 21. (Optional) Consider a k-dimensional subspace W of \mathbb{R}^n . Let $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ be an orthogonal basis for W. Extend it to $\{\mathbf{w}_1, \ldots, \mathbf{w}_k, \mathbf{v}_1, \ldots, \mathbf{v}_{n-k}\}$, a basis for \mathbb{R}^n . Apply Gram-Schmidt process to change it to $\{\mathbf{w}_1, \ldots, \mathbf{w}_k, \mathbf{u}_1, \ldots, \mathbf{u}_{n-k}\}$, an orthogonal basis for \mathbb{R}^n . Show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{n-k}\}$ is a basis for W^{\perp} , and hence we have dim $W + \dim W^{\perp} = n = \dim \mathbb{R}^n$.
- 22. Let:

$$A = \begin{bmatrix} 1 & 5\\ 3 & 1\\ -2 & 4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 4\\ -2\\ -3 \end{bmatrix}.$$

Find a least-squares solution to $A\mathbf{x} = \mathbf{b}$.

23. Find an equation of the straight line that fits each of the following sets of points (x_i, y_i) the best, in the sense of minimizing the square sum of y-distances.

(i) (1, -2), (3, 4), (5, 10) (ii) (1, 2), (2, 5), (3, 7) (iii) (2, 2), (3, 3), (6, 4), (9, 5).

Also write down the error of approximations as square sum of y-distances. (i.e. error= $\sum_{i=1}^{n} [y_i - (c + mx_i)]^2$.)

24. Find an equation of the quadratic polynomial that fits each of the following sets of points (x_i, y_i) the best, in the sense of minimizing the square sum of y-distances.

(i) (1, 4), (2, 4), (3, 2), (4, -2) (ii) (-2, 1), (-1, -2), (1, 1), (2, -1), (3, 2).

Also write down the error of approximations as square sum of y-distances.

(i.e. error= $\sum_{i=1}^{n} [y_i - (c_0 + c_1 x_i + c_2 x_i^2)]^2$.)

25. Find an orthogonal diagonalization of the symmetric matrix:

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix},$$

namely, find an orthogonal matrix P such that $P^T A P$ is a diagonal matrix. Is A positive-definite, negative-definite, or indefinite?

26. Let A be any $m \times n$ matrix. Show that both $A^T A$ and $A A^T$ are positive semi-definite symmetric matrices.

[Remark: The non-negative square roots of the eigenvalues of $A^T A$ are called the singular values of A. Read §7.4 for the important result on Singular Value Decomposition.]

Answers for checking:

1.
$$\begin{vmatrix} -\frac{t}{3} \\ \frac{2}{3} \end{vmatrix}$$

- 2. $\frac{1}{4}\{||\mathbf{u} + \mathbf{v}||^2 ||\mathbf{u} \mathbf{v}||^2\}.$
- 3. (i) 5 (ii) 11 (iii) 38.
- 4. No.
- 5. (i) Note that $||A\mathbf{x}||^2 = \mathbf{x}^T A^T A \mathbf{x}$ (ii) apply rank theorem
- 6. (i) Yes (ii) Yes (iii) No.
- 7. diagonal matrix.
- 8. (i) $\{0\}$ (ii) $W_2^{\perp} \subseteq W_1^{\perp}$.
- 9. (i) $c_2 = -2$ (ii) $c_2 = 0$.

- 10. For any $p(t) \in S^{\perp}$, write $p(t) = a_n t^n + \ldots + a_1 t + a_0$. Use the orthogonality of p(t) with $\{1, t^2, t^4, \ldots, t^{2n}\}$ to write down an $(n+1) \times (n+1)$ homogeneous system on $\{a_n, \ldots, a_1, a_0\}$ and claim that the system has unique zero solution.
- 11. Yes/Yes.
- 12. (i) No (ii) Yes.
- 13. ± 1 .
- 14. $\begin{bmatrix} \frac{1}{3} & -\frac{\sqrt{8}}{3} \\ \frac{\sqrt{8}}{3} & \frac{1}{3} \end{bmatrix}$, $\begin{bmatrix} \frac{1}{3} & \frac{\sqrt{8}}{3} \\ \frac{\sqrt{8}}{3} & -\frac{1}{3} \end{bmatrix}$, $\begin{bmatrix} \frac{1}{3} & \frac{\sqrt{8}}{3} \\ -\frac{\sqrt{8}}{3} & \frac{1}{3} \end{bmatrix}$, $\begin{bmatrix} \frac{1}{3} & -\frac{\sqrt{8}}{3} \\ -\frac{\sqrt{8}}{3} & -\frac{1}{3} \end{bmatrix}$.
- 15. (ii) consider $||T(\mathbf{x}) T(\mathbf{y})||^2 ||\mathbf{x} \mathbf{y}||^2$ and note that $||\mathbf{u} \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 2\mathbf{u} \cdot \mathbf{v}$ (iii) rewrite $||T(\mathbf{x} + \mathbf{y}) - T(\mathbf{x}) - T(\mathbf{y})||^2$, $||T(c\mathbf{x}) - cT(\mathbf{x})||^2$ into inner products and use (ii). To show that $A^T A = I_n$, consider $(A\mathbf{e}_i) \cdot (A\mathbf{e}_j) = \mathbf{e}_i \cdot \mathbf{e}_j$.

16. (i)
$$\begin{bmatrix} 2\\ -3\\ 5\\ -8 \end{bmatrix}$$
, 0 (ii) $\begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix}$, $\sqrt{6}$ (iii) $\begin{bmatrix} \frac{5}{3}\\ \frac{5}{3}\\ 0\\ \frac{5}{3}\\ \frac{5}{3}\\ 0\\ \frac{5}{3}\\ \frac{5}{3}\\$

- 17. Yes.
- 18. Yes.
- 19. No.

- 21. First check that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{n-k}\} \subset W^{\perp}$. l.i. is guaranteed. For spanness, let $\mathbf{x} \in W^{\perp}$, and write $\mathbf{x} = c_1 \mathbf{w}_1 + \ldots + c_k \mathbf{w}_k + d_1 \mathbf{u}_1 + \ldots + d_{n-k} \mathbf{u}_{n-k}$. Use orthogonality to show that $c_1 = \ldots = c_k = 0$.
- 22. $\begin{bmatrix} \frac{2}{7} \\ \frac{1}{7} \end{bmatrix}$.

23. (i)
$$y = -5 + 3x$$
, error $= 0$ (ii) $y = -\frac{1}{3} + \frac{5}{2}x$, error $= \frac{1}{6}$ (iii) $y = \frac{3}{2} + \frac{2}{5}x$, error $= \frac{1}{5}$.
24. (i) $y = 2 + 3x - x^2$, error $= 0$ (ii) $y = -1 - \frac{1}{28}x + \frac{9}{28}x^2$, error $= \frac{47}{7}$.

25. (many choices)
$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}$$
, $P^T A P = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$; indefinite.

26. To determine the sign of eigenvalue λ in $A^T A \mathbf{x} = \lambda \mathbf{x}$, consider $||A\mathbf{x}||^2 = \mathbf{x}^T A^T A \mathbf{x}$.