MATH 2111 Matrix Algebra and Applications

1. Write down the characteristic equations of the following matrices.

(i)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 3 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 & 2 & 5 & 9 \\ 2 & 3 & 11 & 13 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 2 & -1 \end{bmatrix}$ (iv) $\begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix}$ (v) $\begin{bmatrix} 0 & 0 & 0 & -a_0 \\ 1 & 0 & 0 & -a_1 \\ 0 & 1 & 0 & -a_2 \\ 0 & 0 & 1 & -a_3 \end{bmatrix}$

2. Find eigenvalues and eigenvectors of the following matrices.

(i)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$ (iii) $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.

- 3. Show that A and A^T have the same characteristic equation (and hence the same collection of eigenvalues). Give an example to demonstrate that they might have different collections of eigenvectors.
- 4. Let λ be an eigenvalue of A. Find an eigenvalue of the following matrices:

(i)
$$A^2$$
 (ii) $A^3 + A^2$ (iii) $A^3 + 2I$.

- 5. Let $A = R_{\frac{2\pi}{3}}$, the rotation matrix on the plane through 120° in anticlockwise direction, fixing the origin. Find the (real) eigenvalues of A and A^3 .
- 6. Find the possible eigenvalues of A if A satisfies:

(i)
$$A^2 = A$$
 (ii) $A^2 - 2A + I_n = O$ (iii) A is invertible and $3A^{-1} = A + 2I$ (iv) $A^5 = O$.

- 7. Let A be an $n \times n$ invertible matrix. Suppose that **v** is an eigenvector of A corresponding to eigenvalue λ . Find an eigenvalue and an eigenvector of A^{-1} in terms of λ and **v**.
- 8. Let A be an $n \times n$ matrix such that every non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is an eigenvector of A. Show that $A = \lambda I_n$ for some suitable λ .
- 9. Find a condition on a, b, c such that A is diagonalizable.

(i)
$$A = \begin{bmatrix} 0 & a & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & c \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 0 & a & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (iii) $A = \begin{bmatrix} 0 & a & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 2 & c \\ 0 & 0 & 0 & 3 \end{bmatrix}$

10. Determine whether the following matrices are diagonalizable.

(i)
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ (iii) $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 3 \\ 1 & 0 & 1 \end{bmatrix}$ (iv) $A = \begin{bmatrix} 5 & -4 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 4 & -1 \end{bmatrix}$

- -

- 11. Let A be an $n \times n$ diagonalizable matrix. Is $I_n + A$ also diagonalizable?
- 12. Find a pair of diagonalizable matrices A, B such that (i) A + B (ii) AB are <u>not</u> diagonalizable.

13. Diagonalize following matrices:

(i)
$$A = \begin{bmatrix} -4 & -3 & 3 \\ 3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$$
 (ii) $B = \begin{bmatrix} -2 & -3 & 3 \\ 11 & 12 & -3 \\ 5 & 5 & 4 \end{bmatrix}$.

For (ii), find also a 3×3 matrix C such that $C^2 = B$.

14. Compute A^{100} for each of the following matrices.

(i)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ (iii) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$.

15. Consider the following recurrence relation:

 $a_0 = 1, a_1 = 1, a_n = a_{n-1} + 2a_{n-2}$ when $n \ge 2$.

- (i) Let $\mathbf{x}_n = \begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix}$. Find the matrix A that transforms \mathbf{x}_n to \mathbf{x}_{n+1} .
- (ii) Find an explicit formula of a_n by using matrix power.
- 16. A city maintains a constant population of 30,000. A political study estimated that there are 15,000 independents, 9,000 democrats, and 6,000 liberals. It was also estimated that each year 20% of democrats and 10% of liberals become independents, 20% of independents and 10% of liberals become democrats, 10% independents and 10% of democrats become liberals. Find the political composition of the city in the long run.
- 17. Let \mathbf{v}_1 , \mathbf{v}_2 be eigenvectors of A, corresponding to distinct eigenvalues $\lambda_1 \neq \lambda_2$ respectively. Will their sum $\mathbf{v}_1 + \mathbf{v}_2$ again be an eigenvector of A?
- 18. (i) Let P, Q be $n \times n$ matrices. Suppose that (PQ I) is invertible. Verify that (QP I) is also invertible with the following inverse:

$$(QP - I)^{-1} = -I + Q(PQ - I)^{-1}P.$$

(ii) Let A, B be $n \times n$ matrices. Show that AB and BA have the same set of eigenvalues (ignoring multiplicities).

Answers for checking:

1. (i)
$$\lambda^2 - 5\lambda - 2 = 0$$
 (ii) $(1 - \lambda)(2 - \lambda)(3 - \lambda) = 0$ (iii) $(\lambda^2 - 4\lambda - 1)(\lambda^2 + 1) = 0$
(iv) $-(\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0) = 0$ (v) $\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0 = 0$.
2. (i) $\lambda = -1$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $s \in \mathbb{R}$, $s \neq 0$; $\lambda = 3$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, $t \in \mathbb{R}$, $t \neq 0$.
(ii) $\lambda = 1$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, $s \in \mathbb{R}$, $s \neq 0$; $\lambda = 4$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $t \in \mathbb{R}$, $t \neq 0$;
 $\lambda = 6$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} \frac{1}{3} \\ 1 \\ 1 \end{bmatrix}$, $s \in \mathbb{R}$, $s \neq 0$; $\lambda = \sqrt{2}$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} -1 \frac{1}{\sqrt{2}} \\ -1 \frac{1}{\sqrt{2}} \\ 1 \end{bmatrix}$, $t \in \mathbb{R}$, $t \neq 0$;
 $\lambda = -\sqrt{2}$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, $s \in \mathbb{R}$, $s \neq 0$; $\lambda = \sqrt{2}$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} -1 \frac{1}{\sqrt{2}} \\ -1 \frac{1}{\sqrt{2}} \\ 1 \end{bmatrix}$, $t \in \mathbb{R}$, $t \neq 0$;
 $\lambda = -\sqrt{2}$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = u \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -1 + \frac{1}{\sqrt{2}} \\ 1 \end{bmatrix}$, $u \in \mathbb{R}$, $u \neq 0$.
3. (many choices) $A = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.
4. (i) λ^2 (ii) $\lambda^3 + \lambda^2$ (iii) $\lambda^3 + 2$.
5. none; 1. (So " λ^3 is an eigenvalue of $A^{3n} \neq$ " λ is an eigenvalue of A^n .)
6. (i) $\lambda = 0, 1$ (ii) $\lambda = 1$ (iii) $\lambda = -3, 1$ (iv) $\lambda = 0$.
7. eigenvalue: λ^{-1} , corresponding eigenvector: \mathbf{v} .
8. Case $n = 1$ is straightforward; for case $n > 1$, let \mathbf{x} , \mathbf{y} be linearly independent vectors and study the eigenvalues of \mathbf{x} , \mathbf{y} and $\mathbf{x} + \mathbf{y}$.
9. (i) $a = b = c = 0$ (ii) $a = c = 0$, no condition on b (iii) no condition on a, b, c .
10. (i) No (ii) Yes (iii) No (iv) Yes.
11. Yes, consider $I_n = PI_nP^{-1}$.

12. (e.g.)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}.$$

13. (i) $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ -1 & -1 & 1 \end{bmatrix}$
(ii) $B = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} -2 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
(several choices) $C = \begin{bmatrix} 0 & -1 & 1 \\ 3 & 4 & -1 \\ 1 & 1 & 2 \end{bmatrix}.$

14. (i)
$$\begin{bmatrix} 1 & 2^{100} - 1 \\ 0 & 2^{100} \end{bmatrix}$$
 (ii) $\begin{bmatrix} 2^{101} - 3^{100} & -2^{101} + 2 \cdot 3^{100} \\ 2^{100} - 3^{100} & -2^{100} + 2 \cdot 3^{100} \end{bmatrix}$
(iii) $\begin{bmatrix} 1 & 2^{100} - 1 & 3^{100} - 2^{101} + 1 \\ 0 & 2^{100} & 2 \cdot 3^{100} - 2^{101} \\ 0 & 0 & 3^{100} \end{bmatrix}$.
15. (i) $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ (ii) $a_n = \frac{1}{3} \{ 2^{n+1} + (-1)^n \}$.

- 16. Evenly distributed.
- 17. Never.
- 18. (ii) Show that $det(AB xI) = 0 \Leftrightarrow det(BA xI) = 0$ when $x = 0/x \neq 0$. [Remark: Actually, by using block matrix operations:

$$\begin{bmatrix} I & A \\ O & I \end{bmatrix}^{-1} \begin{bmatrix} AB & O \\ B & O \end{bmatrix} \begin{bmatrix} I & A \\ O & I \end{bmatrix} = \begin{bmatrix} O & O \\ B & BA \end{bmatrix}$$

one can even show that AB and BA are having the same characteristic polynomial.]