MATH 2111 Matrix Algebra and Applications

- 1. Consider the polynomial space \mathbb{P} . Is the polynomial $p(t) = 1 t^4$ a linear combination of polynomials in $S = \{1 + t, t + t^2, t^2 + t^3, t^3 + t^4\}$?
- 2. Consider the function space V with a common domain $D = [0, \frac{\pi}{4}]$. Is the function $f(x) = \tan x$ a linear combination of functions in $S = \{\sin x, \cos x\}$?
- 3. Consider the function space V with a common domain $D = \mathbb{R}$. Is the function $f(x) = e^x$ a linear combination of functions in $S = \{\sin x, \cos x\}$?
- 4. Express $\operatorname{Nul} A$ as a span of a suitable set of vectors.

(i)
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}$ (iii) $A = \begin{bmatrix} 1 & 2 & 3 & 1 & 6 \\ 2 & -1 & 1 & 1 & -1 \\ 1 & 1 & 2 & 1 & 3 \\ 2 & 1 & 3 & 1 & 5 \end{bmatrix}$

5. Check if $\mathbf{v} \in \operatorname{Col} A$ where \mathbf{v}, A are given by:

(i)
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 1 \\ 2 & -5 & 1 \\ 3 & -2 & 2 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 & 4 & 5 \\ 2 & 5 & 1 & 1 & 3 \\ -2 & 3 & 1 & -7 & -7 \end{bmatrix}$.

6. Let \mathbf{v}, A be given as follows. Is $\mathbf{v} \in \operatorname{Row} A$?

(i)
$$\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0\\2 & 1 & 1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 1\\2 & -5 & 1\\3 & -2 & 2 \end{bmatrix}$ (iii) $\begin{bmatrix} 5\\7\\2\\10 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 & 0\\2 & -3 & 1 & 4\\-1 & 0 & 3 & 3 \end{bmatrix}$.

7. In polynomial space, is $S = \{1 + t, t + t^2, t^2 + t^3, t^3 + t^4, 1 - t^4\}$ a linearly independent set?

- 8. In function space with domain $D = \mathbb{R}$, is $S = \{\cos t, \cos 2t\}$ a linearly independent set?
- 9. Determine if the following sets of vectors are bases for \mathbb{R}^3 :

(i)
$$\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix} \right\}$$
 (ii) $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$ (iii) $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$

Answers for checking:

- 1. Yes.
- 2. No.
- 3. No.

4. (i) Span{
$$\begin{bmatrix} 0\\1 \end{bmatrix}$$
} (ii) Span{ $\begin{bmatrix} -2\\1\\1 \end{bmatrix}$ } (iii) Span{ $\begin{bmatrix} -1\\-1\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} -2\\-3\\0\\2\\1 \end{bmatrix}$ }.

- 5. (i) Yes (ii) No (iii) Yes.
- 6. (i) No (ii) No (iii) Yes.
- 7. No.
- 8. Yes.
- 9. (i) No (ii) No (iii) Yes.