MATH 2111 Matrix Algebra and Applications

1. Identify the domain/codomain of the matrix transformations given by the following matrices:

(i)
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 2 \\ 1 & -2 & 2 & -2 \end{bmatrix}$ (iii) $A = \begin{bmatrix} 1 & 0 & 2 & -2 \\ 3 & 1 & 4 & -6 \\ 0 & 2 & -4 & 1 \\ -1 & 3 & 5 & 2 \\ 0 & 3 & 7 & 1 \end{bmatrix}$

- 2. Are the linear transformations in Ex. 1 one-to-one? onto?
- 3. Let T be a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 satisfying the following conditions:

$$T\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}3\\1\\-5\end{bmatrix}, \quad T\begin{bmatrix}-1\\1\end{bmatrix} = \begin{bmatrix}0\\-4\\2\end{bmatrix}$$

Find the standard matrix A of T. Is T one-to-one? onto?

4. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. What can you say about the integers n, m in each of the following cases?

(i) T is one-to-one (ii) T is onto (iii) T is both one-to-one and onto.

5. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. What can you say about the one-to-one and onto properties of T in each of the following cases?

(i)
$$n > m$$
 (ii) $n < m$ (iii) $n = m$.

6. Let:

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ -1 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix};$$
$$D = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}, \quad E = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \quad F = \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 2 \end{bmatrix}$$

Compute the followings if defined:

(i)
$$A + B - 2C$$
, (ii) $AD + E$, (iii) $DA + C$, (iv) $BC - EF$, (v) $FE + AD$.

7. When defined, is the product of lower-triangular matrices again lower-triangular?

8. Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
.

- (i) Find two non-zero solutions $\mathbf{x}_1, \mathbf{x}_2$ of $A\mathbf{x} = \mathbf{0}$.
- (ii) Let $B = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix}$. Compute AB.
- (iii) Let C be any 2×2 matrix and D = B + C. Do we always have AC = AD?

9. Let $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$. Compute the following matrix products if defined:

(i) \mathbf{uv} (ii) \mathbf{vu} (iii) $\mathbf{u}^T \mathbf{u}$ (iv) \mathbf{uu}^T (v) \mathbf{uvu} (vi) \mathbf{vuv} .

10. Let
$$E = \begin{bmatrix} 0 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 and let A be any 3×4 matrix.

- (i) Compute EA and describe the result.
- (ii) Let $P = I_3 + E$. What is PA then?

Answers for checking:

- 1. (i) domain: \mathbb{R}^3 , codomain: \mathbb{R}^2 (ii) domain/codomain: \mathbb{R}^4 (iii) domain: \mathbb{R}^4 , codomain: \mathbb{R}^5 .
- 2. (i) not one-to-one but onto (ii) both one-to-one and onto (iii) one-to-one but not onto
- 3. $A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \\ -3 & -1 \end{bmatrix}$; one-to-one but not onto.
- 4. (i) $n \le m$ (ii) $n \ge m$ (iii) n = m.
- 5. (i) not one-to-one; onto unsure (ii) not onto; one-to-one unsure (ii) both unsure.

6. (i)
$$\begin{bmatrix} -3 & 0 \\ 1 & -2 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 4 & 4 & -1 \\ 2 & 5 & 4 \end{bmatrix}$ (iii) not defined (iv) $\begin{bmatrix} -12 & -1 \\ -14 & 4 \end{bmatrix}$ (v) not defined.

7. Yes.

8. (i) (many choices)
$$\mathbf{x}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ (ii) O (iii) Yes.
9. (i) $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \end{bmatrix}$ (ii) $\begin{bmatrix} 20 \end{bmatrix}$ (iii) $\begin{bmatrix} 14 \end{bmatrix}$ (iv) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$ (v) $\begin{bmatrix} 20 \\ 40 \\ 60 \end{bmatrix}$ (vi) $\begin{bmatrix} 40 & 60 & 80 \end{bmatrix}$.
10. (i) $EA = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 5a_{11} & 5a_{12} & 5a_{13} & 5a_{14} \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (ii) PA is the same as performing ERO: $5r_1 + r_2$ to A .