MATH 2111 Matrix Algebra and Applications

1

1. Locate the leading entries for each of the following matrices:

~ 7

(i)
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1&2\\2&3\\0&0\\4&0\\0&5 \end{bmatrix}$ (iii) $\begin{bmatrix} 0&2&0&1\\1&-2&0&0\\0&0&0&4\\0&-1&-2&5 \end{bmatrix}$ (iv) $\begin{bmatrix} 0&0&0&-3&1\\1&2&1&1&2\\0&3&2&-1&0 \end{bmatrix}$

2. Identify the matrices in REF:

(i)
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (iii) $\begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (iv) $\begin{bmatrix} 2 & 0 & 1 & 2 & -5 & 0 \\ 0 & 0 & 1 & 3 & -3 & 4 \\ 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

- 3. Assuming those row echelon matrices in Ex.3 are augmented matrices, solve the corresponding linear systems.
- 4. Transform the following matrices to RREF:

	[1	2	2		[1]	2	1	1		2	4	2	-2	5	1]	
(i)	2	1	2	(ii)	3	7	6	5	(iii)	3	6	2	2	0	4	
	$\lfloor 2$	2	1		$\lfloor -2 \rfloor$	-1	7	4	(iii)	4	8	2	6	-5	7	

- 5. Locate the pivot columns of matrices in Ex.4, and compute also their ranks.
- 6. Let A be a 2×2 matrix consisting of 0 and 1 only. If A is in RREF, find the number of different forms of A.
- 7. Consider a linear system with p variables and q equations.
 - (a) What are the sizes of the coefficient and augmented matrices?
 - (b) If p > q, is the system always consistent?
 - (c) If p < q, is the system always inconsistent?
 - (d) If p = q, will the system always have a unique solution?
 - (e) If $p \neq q$, will the system (when consistent) always have many solutions?
- 8. Find a suitable b such that the following system is <u>in</u>consistent.

$$\begin{cases} x_1 - x_2 + 2x_3 - x_4 = 1\\ 2x_1 - x_2 - x_3 + bx_4 = 1\\ x_1 - 3x_3 - x_4 = -1 \end{cases}$$

9. Find conditions on the b_i 's such that the following systems are consistent:

(i)
$$\begin{cases} x_1 + x_2 = b_1 \\ x_2 + x_3 = b_2 \\ x_1 + x_3 = b_3 \end{cases}$$
 (ii)
$$\begin{cases} x_1 + 2x_2 + 2x_4 = b_1 \\ 2x_1 + x_2 - x_3 + 3x_4 = b_2 \\ 3x_2 + x_3 + x_4 = b_3 \end{cases}$$
 (iii)
$$\begin{cases} x_1 - x_3 + x_4 = b_1 \\ x_1 + x_2 + 2x_3 = b_2 \\ 2x_1 + x_2 + x_3 + x_4 = b_3 \\ x_2 + 3x_3 - x_4 = b_4 \end{cases}$$

- 10. Let A denote the coefficient matrix of a consistent system $A\mathbf{x} = \mathbf{b}$. Determine the number of free variables (if exist) for the following cases.
 - (i) A is 3×4 , rank A = 2.
 - (ii) A is 4×3 , rank A = 3.
 - (iii) A is 7×5 , rank A = 4.
 - (iv) A is 7×7 , rank A = 7.

11. Let A denote the coefficient matrix of a linear system. Find rank A in the following cases.

- (i) The system has 20 equations, 30 variables, 10 free variables.
- (ii) The system has 14 equations, 13 basic variables, 10 free variables.
- (iii) A is 5×7 , solution set of $A\mathbf{x} = \mathbf{0}$ has 3 independent free parameters.
- (iv) A is 2×3 , and $A\mathbf{x} = \mathbf{b}$ is always consistent for every **b**.
- 12. Consider the following column vectors in \mathbb{R}^2 :

$$\mathbf{u} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Is \mathbf{u} a linear combination of (i) $\{\mathbf{v}_1, \mathbf{v}_2\}$? (ii) $\{\mathbf{v}_1, \mathbf{v}_3\}$?

13. Consider the following column vectors in \mathbb{R}^3 :

$$\mathbf{u} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

- (i) Is **u** a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2\}$? $\{\mathbf{v}_2, \mathbf{v}_3\}$? $\{\mathbf{v}_1, \mathbf{v}_3\}$?
- (ii) Is **u** a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- 14. Let $\mathbf{v}_1, \mathbf{v}_2$ be vectors in \mathbb{R}^n . Will Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ contain the zero vector $\mathbf{0}$ of \mathbb{R}^n ?
- 15. Let **u** be a vector in \mathbb{R}^n . Is it always true that:

(i)
$$\operatorname{Span} \{\mathbf{u}, \mathbf{0}\} = \operatorname{Span} \{\mathbf{u}\}$$
? (ii) $\operatorname{Span} \{\mathbf{u}\} = \operatorname{Span} \{\mathbf{u}, 2\mathbf{u}\}$?

Answers for checking:

1. (i)
$$\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1&2\\2&3\\0&0\\4&0\\0&5 \end{bmatrix}$ (iii) $\begin{bmatrix} 0&2&0&1\\1&-2&0&0\\0&0&0&4\\0&-1&-2&5 \end{bmatrix}$ (iv) $\begin{bmatrix} 0&0&0&-3&1\\1&2&1&1&2\\0&3&2&-1&0 \end{bmatrix}$

2. (iii) and (iv).

3. (iii)
$$\begin{cases} x_1 = s \\ x_2 = \frac{1}{2} \\ x_3 = -1 \end{cases}$$
 where s is free. (iv)
$$\begin{cases} x_1 = 1 + \frac{1}{2}t \\ x_2 = s \\ x_3 = 13 - 3t \\ x_4 = t \\ x_5 = 3 \end{cases}$$
 where s, t are free.
4. (i)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 0 & -5 & -3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 1 & 2 & 0 & 4 & -5 & 3 \\ 0 & 1 & -5 & \frac{15}{2} & -\frac{5}{2} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

5. (i) all 3 columns. rank = 3. (ii) columns 1 and 2. rank = 2. (iii) columns 1 and 3. rank = 2.
6. 5.

- 7. (a) $q \times p$, $q \times (p+1)$ (b)–(e) No.
- 8. b = -2.

9. (i) no restriction on b_1, b_2, b_3 (ii) $-2b_1 + b_2 + b_3 = 0$ (iii) $\begin{cases} b_1 + b_2 - b_3 = 0\\ b_1 - b_2 + b_4 = 0 \end{cases}$.

- 10. (i) 2 (ii) 0 (iii) 1 (iv) 0
- 11. (i) 20 (ii) 13 (iii) 4 (iv) 2
- 12. (i) Yes (ii) No.
- 13. (i) No, No, No (ii) Yes.
- 14. Yes.
- 15. (i) Yes (ii) Yes.