Review

Review on basic mathematical notations and concepts

- 1. Set: a collection of objects, enclosed by $\{\}$. e.g. $A = \{1, 2, 3, 4\}$.
- 2. N: the set of all positive integers: $1, 2, 3, \ldots$
- 3. \mathbb{Z} : the set of all integers: $0, \pm 1, \pm 2, \ldots$
- 4. Q: the set of all rational numbers: $\frac{m}{n}$
- 5. \mathbb{R} : the set of all real numbers.
- 6. \mathbb{C} : the set of all complex numbers.
- 7. $a \in A$: object "a" belongs to set "A", e.g. $1 \in \mathbb{N}, \pi \in \mathbb{R}$.
- 8. $a \notin A$: object "a" does not belong to set "A", e.g. $-1 \notin \mathbb{N}, \pi \notin \mathbb{Q}$.
- 9. $\{a \in A : \text{statements}\}$: the set collecting all those objects a (from the set A) satisfying all the statements.
- 10. $A \subseteq B$: A is a subset of B, meaning that every object of A can be found in B.
- 11. A = B: both $A \subseteq B$ and $B \subseteq A$, i.e. containing the same objects. (multiple objects count once, so $\{1, 1, 1, 1, 2\} = \{1, 2\}$.)
- 12. $A \cup B$ (A union B): the set collecting objects belonging to either A or B or both.
- 13. $A \cap B$ (A intersect B): the set collecting objects belonging to both A and B.
- 14. $A \setminus B$ (A complement B): the set collecting objects belonging to A, but not belonging to B.
- 15. ϕ : empty set, containing no object.
- 16. (a_1, \ldots, a_n) : ordered *n*-tuple, a collection of *n* objects a_1, \ldots, a_n with ordering specified as listed. So $(a_1, a_2) \neq (a_2, a_1)$ if $a_1 \neq a_2$.
- 17. associative laws: a + (b + c) = (a + b) + c, $a \times (b \times c) = (a \times b) \times c$ commutative laws: a + b = b + a, $a \times b = b \times a$ distributive law: $a \times (b + c) = (a \times b) + (a \times c)$
- 18. \forall : For all, for every.
- 19. \exists : Exists at least one.
- 20. s.t.: such that
- 21. a := b: a is defined to be b.
- 22. $p \Rightarrow q$ (p implies q): Claiming the statement: if p is correct, q must also be correct.
- 23. $p \leftarrow q$ (q implies p): Claiming the statement: if q is correct, p must also be correct.
- 24. $p \Leftrightarrow q$ (*p* if, and only if, *q*, abbreviated as "*p* iff *q*"): Means both $p \Rightarrow q$ and $q \Rightarrow p$. Sometimes will say "*p* is equivalent to *q*" or "*p*, *q* are equivalent".