
Tutorial note for MATH 2111

Pan Liang

1. System of linear equation

1.1. Some concepts

• Linear equation: a1x1 + a2x2 + ... + anxn = b

• System of linear equation: a collection of one or more linear equations, involving same
variables x1, x2, ...xn.

• Solution of system of linear equation: a collection of x1, x2, ...xn satisfies all of the
equations.

• Three possibilities of solution:

1. no solution;→ the system is inconsistent.

2. exactly one solution; → the system is consistent.

3. infinitely many solutions; → the system is consistent.

1.2. Solving a linear system

Gaussian Elimination

Example 1.1.

2x1 + 4x2 = −4, (1.1)

5x1 + 7x2 = 11. (1.2)

Sol: Eq.1.2-
5

2
Eq.1.1 ⇒ −3x2 = 21 ⇒ x2 = −7. (Elimination 5x1 in Eq.1.2).

Substituting x2 = −7 in Eq.1.1, we have x1 = 12.
Thus, we have the solution x1 = 12, x2 = −7.

1.3. Matrix form

Example 1.1 can be rewritten into the following matrix form

(
2 4
5 7

)(
x1

x2

)
=

( −4
11

)
,

where

(
2 4
5 7

)
is called the coefficient matrix, and

(
2 4 −4
5 7 11

)
is called the augmented

matrix.
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The solution procedure can be written into the matrix notation
(

2 4 −4
5 7 11

)
r2 → r2 − 5/2r1−−−−−−−−−−−→

(
2 4 −4
0 −3 21

)
r2 → −1/3r2−−−−−−−−−→

(
2 4 −4
0 1 −7

)

r1 → r1 − 4r2−−−−−−−−−→
(

2 0 24
0 1 −7

)
r1 → 1/2r1−−−−−−−→

(
1 0 12
0 1 −7

)

⇒ The solution of the linear system is
(

x1

x2

)
=

(
12
−7

)
.

1.4. Elementary row operation

There are three kinds of Elementary row operations (ERO)

1. replacement → replace one row by sum of itself and a multiple of another row;

2. interchange → interchange two rows;

3. scaling → multiply all the entries in a row by some non-zero number.

Definition 1.1. Two matrices are called row equivalent if they differ by a sequence of EROs.

Theorem 1.1. Linear systems corresponding to row equivalent augmented matrices will
hava the same solution set.

Example 1.2. consider the following linear system

x2 + 4x3 = −5,

x1 + 3x2 + 5x3 = −2,

3x1 + 7x2 + 7x3 = 6.

The matrix form of the this linear system



0 1 4 −5
1 3 5 −2
3 7 7 6


 .

Sol: The solution procedure can be written into the matrix notation



0 1 4 −5
1 3 5 −2
3 7 7 6


 r1↔r2−−−−−−−→

interchange




1 3 5 −2
0 1 4 −5
3 7 7 6


 r3→r3−3r1−−−−−−−→

replacement




1 3 5 −2
0 1 4 −5
0 −2 −8 22




r3→r3+2r2−−−−−−−→
replacement




1 3 5 −2
0 1 4 −5
0 0 0 2




⇒ The third row implies 0 = 2 ⇒ The linear system is inconsistent.
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Example 1.3. consider the following linear system

x1 + x2 = 1,

−3x1 + 3x2 = −3.

Sol:
(

1 −1 1
−3 3 −3

)
→

(
1 −1 1
0 0 0

)

⇒ The linear system has infinitely many solutions.

1.5. REF and RREF

• Row echelon form (REF)

1. All non-zero rows are above any zero rows;

2. Leading entry moves to right by at least one column when rows going down;

3. All entries in a column below a leading entry are zeros.

Based on the REF, we have the row reduction algorithm (Gaussian elimination), which
contains two parts

1. Phase 1: Forward elimination (obtain the REF);

2. Phase 2: Backward elimination (obtain the solution).

• Reduced row echelon form (RREF)

1. All non-zero rows are above any zero rows;

2. Leading entry moves to right by at least one column when rows going down;

3. All entries in a column below a leading entry are zeros.

4. Leading entry in each row is 1;

5. Leading entry 1 is the only non-zero entry in its column.

Object: find a form that is easy to obtain the solution of the linear system.

Example 1.4.




1 0 0 0
0 1 0 0
0 0 1 2


 (RREF ),




0 0 1 2
0 1 0 0
0 1 0 0


 (not),




0 1 2 0
0 0 1 0
0 0 0 0


 (REF ),




0 1 0 0
0 0 1 0
0 0 0 0


 (RREF ).
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Example 1.5. Find RREF of the following matrix



1 3 5 7
3 5 7 9
5 7 9 1




Sol: By the REOs, we have



1 3 5 7
3 5 7 9
5 7 9 1


 r2→r2−3r1−−−−−−→

r3→r3−5r1




1 3 5 7
0 −4 −8 −12
0 −8 −16 −34


 r3→r3−2r2−−−−−−−→

r2→r2/(−4)




1 3 5 −2
0 1 2 3
0 0 0 −10




→



1 3 5 −2
0 1 2 3
0 0 0 1


 →




1 3 5 0
0 1 2 0
0 0 0 1


 →




1 0 −1 0
0 1 2 0
0 0 0 1


 (1 is pivot position)

1.6. Rank of a matrix

Some concepts based on RREF

1. uniqueness of RREF;
2. A pivot position ↔ leading 1 in RREF;
3. A pivot column ↔ containing pivot position.
4. Basic variables → pivot position;
5. Free variables → non-pivot position.

Definition 1.2. rank A= no. of pivot positions in A.

Theorem 1.2. Linear systems [A|b] is consistent iff rank A= rank [A|b].
Theorem 1.3. Linear systems [A|b] is consistent with n variables, then the no. of free
variables =n -rank A.

Example 1.6. Find solution of linear system

3x1 − 4x2 + 2x3 = 0,

−9x1 + 12x2 − 6x3 = 0,

−6x1 + 8x2 − 4x3 = 0.

Sol:



3 −4 2 0
−9 12 −6 0
−6 8 −4 0


 r3→r3−2r2−−−−−−−→

r2→r2/(−4)




3 −4 2 0
0 0 0 0
0 0 0 0


 →




1 −4

3

2

3
0

0 0 0 0
0 0 0 0




⇒ Rank A= 1, 1 basic variable and 2 free variables ⇒




x1 =
4

3
s +

2

3
t

x2 = s

x3 = t

.
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2. Vector

2.1. Two descriptions of vector

• geometric:

direction interval from A to B
−→
AB;

length and direction

• algebraic:
a collection of number arranged in column form;
size: number of entries in the vector;
notation: u, v.

2.2. Vector operations

• vector addition: u + v
(

u1

u2

)
+

(
v1

v2

)
=

(
u1 + v1

u2 + v2

)

• scalar multiplication: ku

k

(
u1

u2

)
=

(
ku1

ku2

)

Operations rules

2.3. Linear combination and span

Definition 2.1. Let S = v1, ..., vk be a collection of vectors in Rn and let c1, ..., ck be num-
bers. The following y is a linear combination of the vectors in S

y = c1v1 + ... + ckvk,

or: a l.c. of v1, ..., vk.

Theorem 2.1. Let S = v1, ..., vk ∈ Rn, y ∈ spanS iff [v1, ..., vk|y] is consistent.

Example 2.1. Whether b is linear combination of the columns of A = (v1, v2, v3)?

[A|b] =




1 −4 2
0 3 5
−2 8 −4


 , b =




3
−7
−3


 .

Sol: ⇔ b ∈ (v1, v2, v3) ⇔ (v1, v2, v3|b) is consistent.

[A|b] =




1 −4 2 3
0 3 5 −7
−2 8 −4 −3


 ⇒




1 −4 2 3
0 3 5 −7
0 0 0 3




⇒ [A|b] is inconsistent ⇒ b is not linear combination of the columns of A.
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Example 2.2.

v1 =




1
0
−2


 , v2 =



−3
1
8


 , b =




h
−5
−3


 .

Whether b is linear combination of the columns of (v1, v2)?
Sol: ⇔ (v1, v2|b) is consistent.

[v1, v2|b] =




1 −3 h
0 1 −5
−2 8 −3


 ⇒




1 −3 h
0 1 −5
0 2 −3 + 2h


 ⇒




1 −3 h
0 1 −5
0 0 2h + 7




[v1, v2|b] is consistent iff 2h + 7 = 0 i.e. h = −7/2.

Remark 2.1. Linear combination is a very important concept in this course!!!

Theorem 2.2. Let A be m× n matrix. The followings will be equivalent

• Ax = b is consistent for each b ∈ Rm;

• Each b ∈ Rm is a l.c. of the columns of A;

• The column of A span Rm;

• A has a pivot position in every row.

Remark 2.2. Try to find the relation between the linear combination and linear system.

• linear combination

x1v1 + ... + xkvk = b.

• matrix equation A = [v1, ..., vk]

Ax = b.

Key point

1. Ax = b is consistent ⇔
2. x1a1 + ... + xnan = b is consistent ⇔
3. b is a l.c. of a1, ...,an ⇔
4. b is contained in Span{a1, ...,an}.

Example 2.3. matrix form ⇔ vector equation
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• Ax = b ⇒ x1a1 + ... + xnan = b,

(
1 2 3
5 6 7

) 


x1

x2

x3


 =

(
1
5

)
⇔ x1

(
1
2

)
+ x2

(
2
6

)
+ x3

(
3
7

)
=

(
1
2

)
.

• y1a1 + ... + ynan = b ⇒ Ay = b,

y1




1
2
1


 + y2




2
6
3


 + y3




3
7
8


 =




2
1
5


 ⇒




1 2 3
2 6 7
1 3 8







y1

y2

y3


 =




2
1
5


 .

Example 2.4. Determine whether the columns of A spans R3, where

A = [a1,a2,a3] =




1 2 1
0 1 3
−2 −4 −1


 .

The columns of A spans R3⇔ ∀ b ∈ R3, Ax = b is consistent i,e. [A|b] is consistent.
By REO, we can obtain the REF

[A|b] =




1 2 1 b1

0 1 3 b2

−2 −4 −1 b3


 =




1 2 1 b1

0 1 3 b2

0 0 1 b3 + 2b1




Obviously, this system has solution, so Ax = b is consistent and A spans R3.
Actually, for the matrix A, RankA = Rank[A|b], so Ax = b is consistent and [a1,a2,a3]

span R3.

2.4. Homogeneous and Non-homogeneous system

2.4.1. Homogeneous system

For the linear system

Ax = 0,

then it is called homogeneous system. This system is always consistent, because x = 0 is
solution of the system.

• Basic variables → rank A;

• Free variables → n-rank A.

Example 2.5. Solve the homogeneous system Ax = 0, where

A =




1 3 −3 7
0 1 −4 5
0 2 −8 10
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2.5. Linearly dependent and linearly independent set

Definition 2.2. v1, v2, ..., vn are a set of vectors, for the vector equation a1v1 + a2v2 + ... +
anvn = 0, if it has the unique zero solution, then they are called linearly independent; if it
has non-zero solution, they are called linearly independent set.

Example 2.6. If the following vectors are linearly independent or not?

v1 =




1
0
0


 , v2 =




7
2
−6


 , v3 =




9
4
−11




Based on the definition, we only need to check whether Ax = b has the unique zero solution.

A =




1 7 9
0 2 4
0 −6 −11


 ⇒




1 7 9
0 1 2
0 0 1




Obviously, this system has the unique solution x = 0, so they are linearly independent.

Example 2.7. For what values of h, v1, v2v3 are linearly dependent?

v1 =




1
−1
3


 , v2 =



−3
3
−9


 , v3 =




5
−7
h




sol: For A = [v1, v2, v3] we have

A =




1 −3 5
−1 3 3
3 −9 h


 ⇒




1 −3 5
0 0 −2
0 0 h− 15




This system is always has a solution x1 = 3, x2 = 1, x3 = 0 for any h, so they are always
linearly dependent.

Example 2.8. Are v1, v2, v3 linearly dependent?

v1 =

(
1
1

)
, v2 =

(
1
5

)
, v3 =

(
3
7

)

Based on the definition, we need to verify that v1x1 + v2x2 + v3x3 = 0 has unique zero
solution.

A = [v1, v2, v3] =

(
1 1 3
1 5 7

)
⇒

(
1 0 2
0 1 1

)

⇒

x =




x1

x2

x3


 ⇒



−2
−1
1


 x3

Remark 2.3. n vectors in Rm, where n > m are always linear dependent.
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2.6. Linaer transformation

For the linear system Ax = b, two points of view

• old one: when b is given, find x such that Ax = b, linear system.

• new one: study x 7→ Ax, see which x lands on b, transformation.

Notations for the following transformation

T : Rn → Rm,

T : x 7→ Ax.

where

1. domain Rn,

2. codomain Rm,

3. T (x): image of x, actually Ax,

4. range: the collection of all possible T (x).

Definition 2.3. A transformation T : Rn → Rm is called linear, if

• T (u + v) = T (u) + T (v),

• T (ku) = kT (u),

• combine these two points T (k1u1 + k2u2) = k1T (u1) + k2T (u2) (usually use this one).

For A linear transformation T , two properties

• T (0) = 0,

• T (c1u1 + ... + cnun) = c1T (u1) + ... + cnT (un).

Example 2.9. Linear transformation?

T1

(
x1

x2

)
=




x1

x2

1


 (×), T2




x1

x2

x3


 =




x3
1

x2

x3


 (×), T3

(
x1

x2

)
=




x1

x2

x3

x4


 (

√
)

Example 2.10. T(x)=Ax, find x such that T (x) = b.
Case 1.

A =




1 0 −2
−2 1 6
3 −2 −5


 , b



−1
7
−3
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sol:

[A|b] =




1 0 −2 −1
−2 1 6 7
3 −2 −5 −3


 →




1 0 −2 −1
0 1 2 5
0 −2 1 0


 →




1 0 −2 −1
0 1 2 5
0 0 1 2




⇒ this system has a unique solution

x =




3
1
2




Case 2.

A =

(
1 −5 −7
−3 7 5

)
, b

( −2
2

)

sol:

[A|b] =

(
1 −5 −7 −2
−3 7 5 −2

)
→

(
1 −5 −7 −2
0 −8 −18 −8

)
→

(
1 −5 −7 −2
0 1 2 1

)

→
(

1 0 3 3
0 1 2 1

)

⇒ this system has infinitely many solutions

x =



−3
−2
1


 x3 +




3
1
0




Based on the definition, for these two cases, we need to solve the linear system Ax = b.

Actually, for matrix A, with matrix-vector multiplication, we have

• A(u + v) = Au + Av,

• A(ku) = kAu.

So, based on the definition, if we have a matrix, with with matrix-vector multiplication, we
can define a linear transformation. This point implies that when we have a matrix A, we
can define a linear transformation T : x 7→ Ax. i.e. A → T . In the following, we will also
know that if we have a linear transformation T , we will find its corresponding matrix A, i.e.
T → A.

Theorem 2.3. T : Rn → Rm be a linear transformation, and set A = [Te1, ..., Ten], then
T (x) = Ax, and A is the matrix corresponding to the linear transformation T .

Let x = x1e1 + ... + xnen ⇒
T (x) = T (x1e1 + ... + xnen) = x1T (e1) + ... + xnT (en)

= [Te1, ..., Ten]




x1

x2

x3


 = Ax.
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Example 2.11. Find the matrix corresponding to the linear transformation.
case 1.

Tx = (0, x1 + x2, x2 + x3, x3 + x4)
T

For this transformation, it can be verified that it is a linear transformation, and

Te1 = (0, 1, 0, 0)T ,

Te2 = (0, 1, 1, 0)T ,

Te3 = (0, 0, 1, 1)T ,

Te4 = (0, 0, 0, 1)T ,

so

A = [T (e1), T (e2), T (e3), T (e4)] =




0 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1


 ,

case 2.

T (x) = (x1 − 5x2 + 4x3, x2 − 6x3)
T

For this transformation, it can be verified that it is a linear transformation, and

Te1 = (1, 0)T ,

Te2 = (−5, 1)T ,

Te3 = (4,−6)T ,

so

A = [Te1, Te2, Te3] =

(
1 −5 4
0 1 −6

)
.

In summary, we can draw the conclusion Matrix A ⇔ linear transformation T .

Definition 2.4. T : Rn → Rm is a linear transformation, the kernel of T is defined as
kerT = {x ∈ Rn|T (x) = 0}.

Example 2.12.

(
1 2 3 4
0 1 2 3

)
−

(
0 1 2 3
0 3 4 5

)
=

(
1 1 1 1
0 −2 −2 −2

)
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We need to solve Ax = 0, so

A =→



1 −4 7 −5
0 1 −4 3
0 2 −8 6


 →




1 −4 7 −5
0 1 −4 3
0 0 0 0


 →




1 0 −9 7
0 1 −4 3
0 0 0 0


 ,

x =




9
4
1
0


 x3 +




−7
−3
0
1


 x4 = ux3 + vx4,

thus ker T = Span{u, v}.

2.6.1. Two properties of linear transformation

• One to one property: If T (x1) = b = T (x2)⇒ x1 = x2.
T is one to one⇔T (x) = 0 has trivial solution ⇔a1x1 + ... + anxn = 0 has unique zero
solution ⇔ the columns of A are linearly dependent.

• Onto property: ∀b⇒∃x s.t. T (x) = b.
Ax = b is consistent ⇔ T is onto, so T is onto ⇔ the columns of A span Rm.

3. Matrix

3.1. Matrix operations

1. Matrix addition and scalar multiplication

• A + B, A and B have the same size.

• k · A, k is a real number.

• A−B.

Example 3.1.

(
1 2 3 4
0 1 2 3

)
−

(
0 1 2 3
0 3 4 5

)
=

(
1 1 1 1
0 −2 −2 −2

)

3 ·



1 1 1
0 1 1
0 0 1


 =




3 3 3
0 3 3
0 0 3




12



2. Matrix multiplication
How to define AB,




... ... ... ...
ai1 ai2 ... aip

... ... ... ...


 ·




... b1j ...

... b2j ...

... ... ...

... bpj ...


 =




... ... ...

... cij ...

... ... ...




where

cij = ai1b1j + ai2b2j + ... + aipbpj =

p∑

k=1

aikbkj.

Example 3.2.

A

(
2 5
−3 1

)
, B =

(
4 −5
3 k

)

what k, such that AB = BA?

AB

(
23 5k − 10
−9 k + 15

)
, BA =

(
23 15

6− 3k k + 15

)

⇒

5k − 10 = 15

6− 3k = −9.

Thus k = 5.

Generally, AB 6= BA.
4. Power
Ak = A · A · A · ... · A︸ ︷︷ ︸

k

.

5. Transpose A ∈ Rm×n and AT ∈ Rn×m

A =




a11 a12 ... a1n

... ... ... ...
am1 am2 ... amn


 ⇒ AT =




a11 ... am1

a12 ... am2

... ... ...
a1n ... amn




• If AT = A, A is called symmetric.

• If AT = −A, A is called skew-symmetric.
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3.2. Invertible matrix

Definition 3.1. For a matrix A, if ∃C, s.t. AC = In = CA, then A is called invertible.

Example 3.3.

In =




1 0 0 0
0 1 0 0
... ... ... ...
0 0 0 1


 , I−1

n = In.

A =

(
0 1
1 0

)
, AA =

(
1 0
0 1

)
⇒ A−1 = A.

A5 − 5A− In = 0 ⇒ (A4 − 5In) · A = A · (A4 − 5In) = In

⇒ A−1 = A4 − 5In.

Theorem 3.1. For 2× 2 matrix

A =

(
a b
c d

)
,

when ad− bc 6= 0, A is invertible and

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Based on the theorem above, it is easy to obtain the inverse for 2× 2 matrix.
How to find the inverse of matrix for n× n matrix? For the matrix product, we have

AB = A[b1,b2, ...,bn] = [Ab1, Ab2, ..., Abn] = [e1, e2, ..., en] = In,

so A−1 = [b1,b2, ...,bn], and bi is the unique solution of Ax = ei. we have know that we
can solve this equation by EROs, i.e., [A|ei] ⇒ [In|bi].

Theorem 3.2. A is invertible matrix, if by EROs, [A|In] ⇒ [In|B], then B = A−1.

Example 3.4. Find the inverse of the following matrix

A




1 1 0 −3
−1 −2 1 8
0 0 1 −3
0 0 1 −2
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We performed EROs for [A|I4]




1 1 0 −3 1 0 0 0
−1 −2 1 8 0 1 0 0
0 0 1 −3 0 0 1 0
0 0 1 −2 0 0 0 1




r2→r2+r1−−−−−−−→
r4→−r3+r4




1 1 0 −3 1 0 0 0
0 −1 1 5 1 1 0 0
0 0 1 −3 0 0 1 0
0 0 0 1 0 0 −1 1




r1→3r4+r1,r2→−5r4+r2−−−−−−−−−−−−−−→
r3→3r4+r3




1 1 0 0 1 0 −3 3
0 −1 1 0 1 1 5 −5
0 0 1 0 0 0 −2 3
0 0 0 1 0 0 −1 1




r2→−r3+r2−−−−−−−→
r3→−r3




1 1 0 0 1 0 −3 3
0 1 0 0 −1 −1 −7 8
0 0 1 0 0 0 −2 3
0 0 0 1 0 0 −1 1




r1→−r2+r1−−−−−−−→




1 0 0 0 2 1 4 −5
0 1 0 0 −1 −1 −7 8
0 0 1 0 0 0 −2 3
0 0 0 1 0 0 −1 1




⇒ A−1 =




2 1 4 −5
−1 −1 −7 8
0 0 −2 3
0 0 −1 1


 .

3.2.1. Elementary matrix

Definition 3.2. An elementary matrix is obtained by performing a single ERO on In.

When A → B by a single ERO, we have [A|I] → [B|E]. The matrix E is the elementary
matrix corresponding to the single ERO.

The procedure of obtaining the inverse matrix is a sequence of EROs, so we have a
sequence of elementary matrices En, En−1, ..., E1, and

[A|I] → [EnEn−1...E1A|EnEn−1...E1I] = [I|B]

and A−1 = B = EnEn−1...E1.
As we know, there are three kinds of Elementary row operations (ERO)

1. replacement,

2. interchange,

3. scaling.

Example 3.5. A is 3× 4 matrix.
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(1) Write down the corresponding to the following EROs: (1) r1 ↔ r2, (2) r3 → 2r1 +r3,
(3) −r2.

E1 =




0 1 0
1 0 0
0 0 1


 , E2 =




1 0 0
0 1 0
2 0 1


 E3 =




1 0 0
0 −1 0
0 0 1




(2) B is obtained by (1), (2), (3), write P, s.t B = PA
We have know that B = E3E2E1A, so P = E3E2E1 and

P =




0 1 0
−1 0 0
0 2 1


 .

For Example. 3.4, we can also obtain the sequence of elementary matrices En, En−1, ..., E1,
s.t A−1 = EnEn−1...E1

4. Determinant

4.1. Definition of determinant

• for 2× 2 matrix

A =

(
a b
c d

)
,

the determinant of A is defined as det A = ad− bc.

• for 3× 3 matrix

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 ,

the determinant of A is defined

det A = a11

∣∣∣∣
a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣
a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣
a21 a22

a31 a32

∣∣∣∣
= a11a22a33 − a11a32a23 + a12a23a31 − a12a33a21 + a13a21a32 − a13a31a22.

• for n× n matrix

A =




a11 a12 ... a1n

... ... ... ...
an1 an2 ... ann


 ,
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the determinant of A is defined

det A =
n∑

i=1

a1i · (−1)i+1 det A1i =
n∑

j=1

aj1 · (−1)1+j det Aj1

=
n∑

i=1

aki · (−1)i+k det Aki =
n∑

j=1

ajk · (−1)k+j det Ajk,

where Cki = (−1)i+k det Aki and Cjk = (−1)k+j det Ajk are cofactor of A.

• for n× n triangle matrix

A =




a11 a12 ... a1n

0 a22 ... a1n

... ... ... ...
0 0 ... ann


 ,

det A = a11 · a22 · ... · ann.

Theorem 4.1. Let A be a n× n matrix,

• If A → B by krj + ri, then det B = det A,

• If A → B by rj ↔ ri, then det B = − det A,

• If A → B by lri, then det B = l det A.

Example 4.1.
1. Calculate the determinant of A + B, A− 2B, where

A =

(
1 2
2 1

)
, B =

(
1 −2
1 3

)
.

2. Calculate the determinant of A, where

A =




9 0 0 2
7 3 2 8
3 0 0 0
5 −3 1 11




det A =

∣∣∣∣∣∣∣∣

9 0 0 2
7 3 2 8
3 0 0 0
5 −3 1 11

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣

0 0 2
3 2 8
−3 1 11

∣∣∣∣∣∣
= 3 · 2

∣∣∣∣
3 2
−3 1

∣∣∣∣ = 6 · 9 = 54.
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3. Calculate the determinant of A, where

A =




1 x x2 x3

x3 1 x x2

x2 x3 1 x
x x2 x3 1




By the row operations, we have

det A =

∣∣∣∣∣∣∣∣

1 x x2 x3

0 1− x4 x− x5 x2 − x6

0 0 1− x4 x− x5

0 0 0 1− x4

∣∣∣∣∣∣∣∣
= (1− x4)3

4. Calculate the determinant of A, where

A =




1 x x x
x x x x
x x x2 x
x x x x3




By the row operations, we have

det A =

∣∣∣∣∣∣∣∣

1− x 0 0 0
x x x x
0 0 x2 − x 0
0 0 0 x3 − x

∣∣∣∣∣∣∣∣
= (1− x)

∣∣∣∣∣∣

x x x
0 x2 − x 0
0 0 x3 − x

∣∣∣∣∣∣
= −(1− x)2x2(x3 − x).

5. Calculate the determinant of A, where

A5 =




1 2 0 0 0
2 1 2 0 0
0 2 1 2 0
0 0 2 1 2
0 0 0 2 1




.

For the matrix A5, we have

det A5 =

∣∣∣∣∣∣∣∣∣∣

1 2 0 0 0
2 1 2 0 0
0 2 1 2 0
0 0 2 1 2
0 0 0 2 1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

1 2 0 0
2 1 2 0
0 2 1 2
0 0 2 1

∣∣∣∣∣∣∣∣
− 4 ·

∣∣∣∣∣∣

1 2 0
2 1 2
0 2 1

∣∣∣∣∣∣
= det A4 − 4 det A3,

sodet A5 = det A4 − 4 det A3, and det Ai can be considered as a sequence with det A1 = 1
and det A2 = −3.
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6. Let A denote the following matrix

A =




a d c b
b a d c
c b a d
d c b a


 .

(i) Assume a = 1, b = 2, c = 3, d = 4, det A?

det A =

∣∣∣∣∣∣∣∣

1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 4 3 2
0 −7 −2 −1
0 −10 −8 −2
0 −13 −10 −7

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

−7 −2 −1
−10 −8 −2
−13 −10 −7

∣∣∣∣∣∣
=

∣∣∣∣∣∣

−7 −2 −1
4 −4 0
36 4 0

∣∣∣∣∣∣

so det A = −160
(ii) Show that det A contains the (a + b + c + d) factor
By row operations

det A =

∣∣∣∣∣∣∣∣

a d c b
b a d c
c b a d
d c b a

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a + b + c + d a + b + c + d a + b + c + d a + b + c + d
b a d c
c b a d
d c b a

∣∣∣∣∣∣∣∣

= (a + b + c + d)

∣∣∣∣∣∣∣∣

1 1 1 1
b a d c
c b a d
d c b a

∣∣∣∣∣∣∣∣
.

(ii) Show that det A contains the (a− b + c + d) factor
By row operations

det A =

∣∣∣∣∣∣∣∣

a d c b
b a d c
c b a d
d c b a

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a− b + c− d d− a + b− c c− d + a− b b− c + d− a
b a d c
c b a d
d c b a

∣∣∣∣∣∣∣∣

= (a− b + c− d)

∣∣∣∣∣∣∣∣

1 −1 1 −1
b a d c
c b a d
d c b a

∣∣∣∣∣∣∣∣
.

4.2. Cramer’s rule

Theorem 4.2. When det A 6= 0, A is invertible, the unique solution of Ax = b is given by

xi =
det Ai(b)

det A
,

where Ai(b) = [a1, ...,ai−1, b,ai+1, ...,an].
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Example 4.2. Use Cramer’s rule to solve the system

3x1 − 2x2 = 6

−5x1 + 4x2 = 8

For this system,

A =

(
3 −2
−5 4

)
, A1(b) =

(
6 −2
8 4

)
, A2(b) =

(
3 6
−5 8

)
,

so x1 =
det A1(b)

det A
= 20 and x2 =

det A2(b)

det A
= 27.

5. Vector space

This section contains some abstract concepts, which are not easy for new
learners, so you should firstly review these concepts. In this course, calculation
is not difficult, but the understanding of these concepts is the most important
thing. The concepts in this chapter is similar with that in the chapters before,
you should find and construct the relations between these concepts and it will
be helpful to understand them well.

5.1. Vector space and subspace

Definition 5.1. A collection of vectors V , with vector addition and scalar multiplication,
is called vector space, if the following points are satisfied.

1. u + v is always in V ,

2. u + v = v + u,

3. (u+v)+w=u+(v+w),

4. has 0, s.t. u+0=0,

5. for each u ∈ U , s.t. u + (−u) = 0,

6. cu is always in V,

7. c(u+v)=cu+cv,

8. c(du)=(cd)u,

9. 1u=u.

Example 5.1. Some case for vector space

• {0},
• Rn,

• Pn = {p(t)|p(t) = p + 0 + p1t + ... + pnt
n, t ∈ R}, the polynomials with degree at most

equal to n,
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• P , all the polynomials,

• Mm×n, collection of all m× n matrices.

Definition 5.2. A subspace H ⊆ V is a non-empty subset if V , s.t. H itself forms a vector
space under the same vector addition and scalar multiplication.

An alternative definition

1. 0 ∈ V in H,

2. u, v ∈ H, then u + v ∈ H,

3. u ∈ H and a ∈ R, then au ∈ H.

Example 5.2. Some case for vector subspace

1. {0},
2. Rn,

3. Pn = {p(t)|p(t) = p + 0 + p1t + ... + pnt
n, t ∈ R}, the polynomials with degree at most

equal to n,

4. P , all the polynomials,

5. Mm×n, collection of all m× n matrices.

Definition 5.3. S = {v1, v2, ..., vn} is a set of vectors in V , y = c1v1+...+cnvn is called the
linear combination of {v1, v2, ..., vn}. Span{v1, v2, ..., vn} is the collection of all the possible
linear combinations of {v1, v2, ..., vn}.

Based on the definition, H = {v1,v2, ...,vn} is a subspace of V .

Definition 5.4. A is m × n matrix, the null space of A is defined as NullA = {x|Ax =
0,x ∈ Rn}.

Based on the definition, we can also verify that NullA is a subspace of Rn.

Example 5.3. Describe the null space of A, where

A =




1 2 2 1
2 5 10 3
1 3 8 2


 .

Based on the definition, we need to solve the linear system Ax = 0. By the row operations,
we have

A =




1 2 2 1
2 5 10 3
1 3 8 2


 →




1 0 −10 −1
0 1 0 1
0 0 0 0


 ,
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the solution can be written as

x =




10
−6
1
0


 x3 +




1
−1
0
1


 x4 = v3x3 + v4x4.

Consequently, NullA = Span{v3, v4}.

Theorem 5.1. For a matrix A, NullA = 0 equivalent to Ax = 0 has unique solution.
When Ax = 0 has {v1, ..., vn} as a set of basic solution, then NullA = {v1, ..., vn}.

Definition 5.5. A = (a1, ...,an) is m × n matrix, the column space of A is defined as
ColA = Span{a1, ...,an}.

Based on the definition, a ∈ ColA equivalent to the linear systen [A|v] is consistent.

Example 5.4. whether v1 and v2 in ColA, where

A =




1 2 2 1
2 4 0 6
1 2 2 1


 .

Based on the definition, we check the linear system Ax = vi is consistent or not.
By the row operations, we have

[A|v1] =




1 2 2 1 1
2 4 0 6 2
1 2 2 1 1


 →




1 2 2 1 1
0 0 −2 2 0
0 0 1 −1 0


 ,

so [A|v1] is consistent and v1 ∈ ColA.

[A|v2] =




1 2 2 1 1
2 4 0 6 4
1 2 2 1 7


 →




1 2 2 1 1
0 0 −2 2 2
0 0 1 −1 6


 ,

so [A|v2] is inconsistent and v2 is not in ColA.

Remark 5.1. T is the linear transformation corresponding to A, v ∈ the range of T ↔
∃x ∈ Rn, s.t. T (x) = v ↔ [A|v] is consistent, thus ColA is the same as the range of T .
ColA = Rm iff every rows of A has a pivot position.

With the definition of column space, the row space can be defined as RowA = ColAT .
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5.2. Linear transformation in general

Definition 5.6. V and W are two vector spaces, a transformation T : V → W is called
linear, if

• T (u + v) = T (u) + T (v),

• T (ku) = kT (u),

• combine these two points T (k1u1 + k2u2) = k1T (u1) + k2T (u2) (usually use this one).

If V = W , T is called linear operator.

It can be observed that this definition is similar with that of a linear transformation
T : Rn → Rm. However, here T : V → W and V and W are two vector spaces. If we take
V = Rn and W = Rm, two definitions will be the same. So it is called linear transformation
in general.

Definition 5.7. V and W are two vector spaces, Let T : V → W is linear transformation

• the kernel of T , ker T = {v ∈ V |T (v) = 0},
• the image of T , ImT = {w ∈ W : ∃vs.t.T (v) = w}.

For the linear transformation T : V → W , we also define the one-to-one and onto
properties.

• T is one-to-one, iff ker T = 0,

• T is onto, iff ImT = W .

Example 5.5. V=W=P (R) the vector composed of all the polynomials.

• D(p) =
d

dt
p(t) (Differential operator) ⇒ onto not one-to-one,

• Ia(p) =

∫ t

a

p(s)ds (Integral operator) ⇒ one-to-one not onto.

It can be verified that ker T and ImT are subspace of V and W respectively. If V = Rn

and W = Rm, we can find A ↔ T , then ker T = NullA and ImT = ColA. (prove)
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5.3. Basis for subspace

Definition 5.8. H is a subspace of V , B is called a basis for H, if

• B is a linearly independent set; (moving any vector from it will make the span smaller),

• SpanB=H; (every vector in H can be written as a l.c. of the vector in B).

Example 5.6. Some examples about basis.

• {e1, e2, ..., en} is a basis for Rn.

• {1, t, ..., tn} is a basis for P n.

• {[0, 1]T , [1, 1]T} and {[1,−1]T , [1, 0]T} are two basis for R2.

It can be observed that for the vector space Rn, the basis must contains n vectors,
otherwise if m < n, the Rank of the matrix composed by the m vectors must be less than
m i.e. the span of these vector can not be Rn. If we have set of vectors {v1,v2, ...,vn}, they
are the basis of Rn iff det A 6= 0 where A = [v1,v2, ...,vn].

5.4. Coordinate vector relative to a basis

B = {b1, ...,bp} is a basis for H, the coordinate vector of x relative to B is the vector in
Rp formed by numbers c1, ..., cp, such that x = c1b1 + ... + cpbp, then the coordinate vector
is denoted as [x]b = [c1, ..., cp]

T .

Example 5.7. B = {[3, 1]T , [1, 3]T}, find the coordinate vector for any x = [x1, x2]
T ∈ R2.

Firstly, we need to check these to vectors are basis for R2. Based on the definition of the
coordinate vector, we need to find c1, c2, s.t.

x1 = 3c1 + c3,

x2 = c1 + 3c2,

⇒

c1 =
3x1 − x2

8
,

c2 =
3x2 − x1

8
,

so, for any x, the coordinate vector is [x]b = [
3x1 − x2

8
,
3x2 − x1

8
]T

Example 5.8. B = {



1
1
−1


 ,




1
−1
1


 ,



−1
1
1


}, find the coordinate vector for e1.
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Firstly, we need to check these to vectors are basis for R3. To find c1, c2, c3, we need to
solve the following equation




1
0
0


 = c1




1
1
−1


 + c2




1
−1
1


 + c3



−1
1
1




The solution is c1 =
1

2
, c2 =

1

2
, c3 = 0, so the coordinate vector is [e1]b = [

1

2
,
1

2
, 0]T .

5.5. Dimension of vector space

Let B = {b1, ...,bp} be a basis for H, then any subset of H containing q > p vectors
must be linearly independent. With this observation, we can prove that if B and C are two
basis of H containing n and m vectors, then n = m. Thus, for a vector space, any basis
must containing the same of vectors, we have the following definition

Definition 5.9. When V has a basis B with n vectors, V will be called finite dimensional
space, and dim V = n.

• dim Rn = n, {e1, ..., en} is a basis of Rn.

• dim Pn = n, {1, t, ..., tn} is a basis of Pn.

• dim P = ∞, {1, t, t2, ...} is a basis of P and it contains infinity number of elements.

Example 5.9. Describe all possible subspace H of R3

• dim H = 0, H={0}
• dim H = 1, H=Span{v}, where v ∈ R3

• dim H = 2, H=Span{u, v}, where u, v ∈ R3 and u, v are linearly independent.

6. Eigenvalue and eigenvector

6.1. Eigenvalue and eigenvector

Definition 6.1. A is a square matrix, when Ax = λx has a non-trivial solution x, λ is
called an eigenvalue of A and x is an eigenvector of A corresponding to λ.

Example 6.1. Find the eigenvalue and eigenvector of A

• A = In, for any x ∈ Rn, we have Ax = Inx = x = 1 · x, so 1 is the eigenvalue of A
and any x ∈ Rn are eigenvectors corresponding to 1.

• A =

(
1 1
2 2

)
, when x = (a,−a)T , we have Ax = 0 = 0 · x, so 0 is the eigenvalue of

A and any x = (a,−a)T are eigenvectors corresponding to 0.
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How to find eigenvalue and eigenvector of any matrix?
Based on the definition, if λ is an eigenvalue of A, the linear system (A − λI)x = 0

has non-zero solution ⇔ det(A − λI) = 0, which implies that eigenvalue λ is the root of
polynomial p(λ) = det(A− λI), and p(λ) is called the characteristic equation of A.

Theorem 6.1. λ is an eigenvalue of A, iff λ is the root det(A− λIn) = 0.

Example 6.2. Find the eigenvalue and eigenvector of A, where

A =




1 0 0
5 2 0
6 7 4


 .

For matrix A, det(A− λI) = (1− λ)(2− λ)(4− λ), so the eigenvalues are λ1 = 1, λ2 =
2, λ3 = 4. Solving the linear system (A − λiI)x = 0, we can obtain the eigenvectors corre-
sponding to λi.

Example 6.3. Find the eigenvalue and eigenvector of A, where

A =

(
1 0
0 2

)
ERO−−−→

(
0 2
1 0

)
= B

For matrix A, det(A − λI) = (1 − λ)(2 − λ), so the eigenvalues are λ1 = 1, λ2 = 2.
However, for B, λ1,2 = ±√2. This example implies that by ERO, the eigenvalues are
different.

Example 6.4. For a matrix A,

• If A is not invertible, λ = 0 is an eigenvalue of A (det A = 0).

• If λ is an eigenvalue of A, for any n, Anx = An−1 · Ax = λAn−1x = λnx, So λn is an
eigenvalues of An.

6.2. Diagonalization

Aim: To find a diagonal matrix D and an invertible matrix P , such that A = PDP−1.
Suppose that D = diag(λ1, λ2, ..., λn) and P = [v1,v2, ...,vn], A = PDP−1 ⇒ AP =

PD ⇒ [Av1, Av2, ..., Avn] = [λv1, λv2, ..., λvn], i.e. the elements of D is the eigenvalues of
A and the columns of P are eigenvector corresponding to the eigenvector.

Definition 6.2. For a matrix A, if there exist eigenvectors {v1, v2, .., vn} of A such that P =
[v1, v2, .., vn] is invertible, A is called diagonalizable and A = PDP−1 is a diagonalization
of A.
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Example 6.5. Whether A is diagnalizable, where

A =

(
1 1
4 1

)
.

|A− λI| = (λ− 1)2 − 4 = 0, λ1 = 3, λ2 = −1.

For λ1 = 3, (A − λ1I)x = 0 ⇒ x = (
1

2
, 1)T . For λ2 = −1, (A − λ2I)x = 0 ⇒ x =

(−1

2
, 1)T .

Thus A is diagnalizable, P =

( 1

2
−1

2
1 1

)
, P−1 =




1
1

2

−1
1

2


 and D =

(
3 0
0 −1

)
.

Example 6.6. Whether A is diagnalizable, where

A =

(
1 1
0 1

)
.

For A, λ1 = λ2 = 1, the eigenvectors corresponding to λi is vi = (s, 0)T and p = [v1, v2]
is not invertible. Thus, A is not diagnalizable.

In general, how to determine the diagonalizability of A?
Since AP = PD, P is invertible ⇔ A has n linear independent eigenvectors.

Theorem 6.2. A is a n× n matrix

• A is diagonaliable iff it has n linear independent eigenvectors;

• The eigenvectors corresponding to distinct eigenvalues are automatically linear inde-
pendent;

• If A has n distinct eigenvalues, A is always diagonaliable. (When A has some re-
peated eigenvalues, whether it is diagonaliable dependent on whether the eigenvectors
are linear independent or not.)

The step of diagonalization of a matrix

1. Find the eigenvalues of A;

2. For each eigenvalues, find a basis for the eigenspace Eλ = Null(A− λI) ;

3. Construct P by putting these vectors as its columns;

4. Construct D using the corresponding eigenvalues following the same order.

Example 6.7. Exercise Diagonalize A, where

A =




4 1 −1
2 5 −2
1 1 2


 .
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7. Inner product

7.1. Inner product

Inner product is a generalization of dot product. Let u,v are vectors in Rn, the inner
product is defined as

u · v = u1v1 + ... + unvn =
n∑

i=1

uivi.

Theorem 7.1. Let u, v,w ∈ Rn and c ∈ R then

1. u · v = v · u;

2. (u + v) ·w = u ·w + v ·w;

3. (cu) · v = cu · v;
4. (u) · u ≥ 0, and u · u = 0 iff u = 0;

Some related definitions

1. Norm: ||v|| = √
v · v;

2. Distance: dist(u,v) = ||u− v||;
3. Angle: ∠(u,v) = cos−1 u · v

‖u‖‖v‖ .

Based on these definitions, we have the following properties

1. Cauchy-Schwarz inequality: |u · v| ≤ ‖u‖‖v‖;
2. Triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖;
3. Pythagoras’ theorem in vector form: ‖u+v‖2 = ‖u‖2 + ‖v‖2 iff u ·v = 0 i.e. they are

orthogonal with each other.

Definition 7.1. Let u, v ∈ Rn, when u · v = 0, they are orthogonal, denoted as u ⊥ v.

Remark

1. This is a general form of perpendicularity;

2. 0 is orthogonal with any other vectors.

Definition 7.2. Let S ⊂ Rn, if u is orthogonal to any vectors in S, u is orthogonal to S
denoted as u ⊥ S. The orthogonal complement of S is defined as S⊥ = {u ∈ Rn|u ⊥ S}.

1. In R3 let S1=x-axis, then e2 ⊥ S1 and e3 ⊥ S1, S⊥1 = Span{e2, e3};
2. In Rn let S2 = Span{e1, .., ek} then ej ⊥ S2, j = k + 1, ..., n, S⊥2 = Span{ek+1, en}.
Let A be a m× n matrix, then (RowA)⊥ = NullA and (ColA)⊥ = NullAT .
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7.2. Orthogonal sets and orthonormal sets

Definition 7.3. Let S ⊂ Rn is called orthogonal if any two vectors in S are always
orthogonal to each other. Let S ⊂ Rn is called orthonormal if (1) S ⊂ is called orthogonal;
(2) each vector in S is of unit length.

Definition 7.4. A basis for a subspace W is called an orthogonal basis if it is an orthog-
onal set; a basis for a subspace W is called an orthonormal basis if it is an orthonormal
set.

Definition 7.5. Let S ⊂ Rn is called orthogonal if any two vectors in S are always
orthogonal to each other. Let S ⊂ Rn is called orthonormal if (1) S ⊂ is called orthogonal;
(2) each vector in S is of unit length.

Example 7.1. {e1, e2, e3} is an orthonormal basis for R3. S = {(1, 2)T , (2,−1)T} is an
orthogonal basis for R2.

The vectors in an orthogonal set are always linear independent. Let S = {v1, ...,vp} be
an orthogonal set, then for any v ∈ SpanS, v can be written as

v =
v · v1

‖v1‖ v1 + ... +
v · vp

‖vp‖ vp. (7.1)

Let S ′ = {v′1, ...,v′p} be an orthonormal set, then for any v ∈ SpanS ′, v can be written as

v =
v · v′1
‖v′1‖

v′1 + ... +
v · v′p
‖v′p‖

v′p.

Let S = {u1, ...,up} be an orthogonal basis for W , for each v ∈ Rn, the following vector
in W

projWv =
v · u1

‖u1‖ u1 + ... +
v · up

‖up‖ up (7.2)

is called the orthogonal projection of v onto W .
Based on Eq.(7.1) and Eq.(7.2), we have v = projWv ⇔ v ∈ W .

Example 7.2. W = Span{(2,−2, 1)T , (2, 1,−2)T}, find projWv, where v = (1, 2, 3)T .
Exercise.

Definition 7.6. The decomposition v = projWv+(v−projWv) is called orthogonal decom-
position of v. It can be proved that the orthogonal decomposition is the unique way to write
v = w + z with w ∈ W and z ∈ W⊥.

Let v ∈ Rn and w ∈ W , we have ‖v − projWv‖ < ‖v − w‖, the equality holds when
w = projWv, so, in some sense, projWv is the best approximation of v by the vectors in W .
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Definition 7.7. The distance of v to W is defined as dist(v,W ) = ‖v− projWv‖

Let S = {u1, ...,up} be an orthogonal basis for W = SpanS, when W 6= Rn, then
W⊥ 6= Φ and there exists w in W⊥, s.t. w ⊥ S, hence S ∪ {w} is still orthogonal. In other
words, we can extend an orthogonal set by adding a vector w. It can be summarized as
follows

1. S1 = {u1}, and u2 6∈ S1 then compute z2 s.t. S2 = {u1, z2} is orthogonal and
Span{u1, z2} = Span{u1,u2};

2. S2 = Span{u1,u2}, and u3 6∈ S2 then compute z3 s.t. S3 = {u1,v2, z3} is orthogonal,
and Span{u1,u2, z3} = Span{u1,u2,u3}.

3. ...

The process is celled Gram-Schmidt orthogonalization process.
Let {x1, ...,xp} be a set of linear independent vectors, the process can be summarized

as: choose u1 = x1, then

u2 = x2 − x2 · u1

‖u1‖ u1,

u3 = x3 − x3 · u1

‖u1‖ u1 − x3 · u2

‖u2‖ u2,

...

up = xp −
p−1∑
i=1

xp · ui

‖ui‖ ui.

Then Span{x1, ...,xp} = Span{u1, ...,up} and {u1, ...,up} is an orthogonal set.

8. Symmetric matrix

8.1. Eigenvectors of a symmetric matrix

Let A be symmetric, then eigenvectors of A corresponding to distinct eigenvalues are or-
thogonal to each other. With this conclusion, the collection of these eigenvalues is orthogonal
(orthonormal).

If {u1, ...,un} is eigenvectors of A, then A diagonalizable and A = PDP−1, where P =
(u1, ...,un). When {u1, ...,un} is orthonormal set, P T = P−1 and we have A = PDP T .

Definition 8.1. A matrix is orthogonal diagonalizable if there exist orthogonal matrix P s.t
A = PDP T .

For the symmetric matrix, it must be orthogonal diagonalizable (direct conclusion).
The step of diagonalization of a symmetric matrix

1. Find the eigenvalues of A;

2. For each eigenvalues, find a basis for the eigenspace Eλ = Null(A − λI), then apply
Gram-Schmidt process to convert it into an orthonormal basis;
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3. Construct P by putting these vectors as its columns;

4. Construct D using the corresponding eigenvalues following the same order.

Example 8.1. Exercise Orthogonal diagonalize A, where

A =




4 1 −1
2 5 −2
1 1 2


 .

Theorem 8.1. (Spectral Theorem for Symmetric Matrices) Let A be an n×n sym-
metric matrix. Then:

1. A has n real eigenvalues, counting multiplicities.

2. For each λ, dim Null(A− λI) = multiplicity of λ.

3. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

4. A is orthogonally diagonalizable, namely, there is an orthogonal matrix P and a diag-
onal matrix D s.t. A = PDP T .

Theorem 8.2. (Principal Axes Theorem) Let A be an n× n symmetric matrix. Then
there is an orthogonal change of variable, x = Py, that transforms the quadratic form xT Ax
into a quadratic form yT Dy with no cross-product terms

xT Ax =
n∑

i;j=1

aijxixjx = Py←−−−→
n∑

i=1

λiy
2
i = yT Dy.

This theorem can describe behavior of quadratic forms (depending on the sign of λi)

1. positive definite;

2. negative definite;

3. indefinite.
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