Integral Equation Method for Cahn-Hilliard Equation in Wetting Problems

Xiaoyu Wei¹

¹Department of Computer Science, University of Illinois at Urbana-Champaign

Feb 26, 2019

Joint work with Shidong Jiang², Andreas Klöckner³ and Xao-Ping Wang⁴ (in alphabetical order)

²Department of Mathematical Sciences, New Jersey Institute of Technology
 ³Department of Computer Science, University of Illinois at Urbana-Champaign
 ⁴Department of Mathematics, the Hong Kong University of Science and Technology

Outline

- Background
- Initial-Boundary Value Problem
- 2 Method Formulation and Fast Algorithms
 - Static BVPs and Volume Potential
 - Static Pure BVPs and SKIE Formulation
 - Fast Algorithms

3 Numerical Results

- Accuracy Tests
- Short-Time Dynamics
- Long-Time Dynamics
- Comparison with Mixed-FEM

Conclusion

Bibliography

Wetting Problem

Figure: Illustration of droplet wetting on rough surfaces. Image from¹.

Xiaoyu Wei (CS@UIUC)

¹Sahoo et al. 2018.

- Smooth "phase-field" function ϕ : -1 in liquid, 1 in vapor.
- *Small* interface "thickness" ϵ . (Image from the Internet²).

²Nele Moelans' Website :: Research :: Phase Field Method n.d.

Xiaoyu Wei (CS@UIUC)

IEM for Cahn-Hilliard Wetting

Phase-Field Modeling (Cont'd)

• Total energy
$$\mathcal{E}_{tot} = \int_{\Omega} \mathcal{E}_{blk} + \int_{\partial \Omega} \gamma$$
.

• Ginzburg-Landau energy³ $\mathcal{E}_{blk}[\phi] = \int_{\Omega} \frac{\epsilon}{2} \|\nabla \phi(\mathbf{x})\|^2 + \frac{[\phi(\mathbf{x})^2 - 1]^2}{4\epsilon} d\mathbf{x}.$

- Surface free energy $\gamma[\phi] = \frac{\sqrt{2}}{3} \cos \theta_Y \sin \left(\frac{\pi}{2}\phi\right)$.
- Equilibrium contact angle⁴ (Young's angle) θ_Y .

³Cahn and Hilliard 1958. ⁴Xu and Wang 2010.

Xiaoyu Wei (CS@UIUC)

Modeling Equations

• Inside Ω ,

$$\frac{\partial \phi(\mathbf{x}, t)}{\partial t} = \Delta \mu(\mathbf{x}, t)$$
(1)
$$\mu(\mathbf{x}, t) = -\epsilon \Delta \phi(\mathbf{x}, t) + \frac{\phi(\mathbf{x}, t)^3 - \phi(\mathbf{x}, t)}{\epsilon}$$
(2)

• On $\partial \Omega$,

$$\frac{\partial \phi(\mathbf{x}, t)}{\partial t} = -\epsilon \partial_n \phi(\mathbf{x}, t) + \frac{\partial \gamma(\phi)}{\partial \phi}(\mathbf{x}, t)$$
(3)
$$\partial_n \mu(\mathbf{x}, t) = 0$$
(4)

where $\partial_n = \mathbf{n} \cdot \nabla$, and \mathbf{n} is the unit outward normal of $\partial \Omega$.

Convex splitting technique 5 is used for time discretization. In $\Omega,$

$$egin{aligned} &rac{\phi^{n+1}(\mathbf{x})-\phi^n(\mathbf{x})}{\delta t}=\Delta\mu^{n+1}(\mathbf{x}),\ &\mu^{n+1}(\mathbf{x})=-\epsilon\Delta\phi^{n+1}(\mathbf{x})+rac{s\phi^{n+1}(\mathbf{x})-(1+s)\phi^n(\mathbf{x})+(\phi^n)^3(\mathbf{x})}{\epsilon} \end{aligned}$$

where s is a constant (more discussion later); and on the boundary,

$$\frac{\phi^{n+1}(\mathbf{x}) - \phi^{n}(\mathbf{x})}{\delta t} = -\epsilon \partial_{n} \phi^{n+1}(\mathbf{x}) + \frac{\partial \gamma}{\partial \phi} (\phi^{n}(\mathbf{x})),$$
$$\partial_{n} \mu^{n+1}(\mathbf{x}) = 0.$$

⁵Eyre 1997.

Xiaoyu Wei (CS@UIUC)

Convex splitting is energy stable regardless of time step size δt .

Theorem (Unconditional Stability)

If $|\phi^k(\mathbf{x})| \leq M, \forall k = 0, 1, ..., n$, and $s \geq (3M^2 - 1)/2$, the convex splitting scheme satisfies the following discrete energy law:

$$\mathcal{E}_{tot}^{n+1} - \mathcal{E}_{tot}^n \leq -\delta t (\nabla \mu^{n+1}, \nabla \mu^{n+1}).$$

Idea of the proof: convex splitting of energy $\mathcal{E}_{tot} = \mathcal{E}_c - \mathcal{E}_e$, with \mathcal{E}_c convex, and the second variation of \mathcal{E}_e bounded from below. Recall: $\mathcal{E}_{tot} = \int_{\Omega} \left(\frac{\epsilon}{2} \|\nabla \phi(\mathbf{x})\|^2 + \frac{[\phi(\mathbf{x})^2 - 1]^2}{4\epsilon}\right) d\mathbf{x} + \int_{\partial\Omega} \frac{\sqrt{2}}{3} \cos \theta_Y \sin \left(\frac{\pi}{2} \phi(\mathbf{x})\right) ds_{\mathbf{x}}$

Static BVPs

After time discretization, it remains to solve at each time step

$$(\Delta^2 - b\Delta + c)\phi^{n+1}(\mathbf{x}) = f_1(\mathbf{x}),$$

 $(\Delta - b)\phi^{n+1}(\mathbf{x}) + rac{1}{\epsilon}\mu^{n+1}(\mathbf{x}) = f_2(\mathbf{x}),$

subject to boundary conditions

$$(\partial_n + c)\phi^{n+1}(\mathbf{x}) = h(\mathbf{x}), \quad \frac{1}{\epsilon}\partial_n\mu^{n+1}(\mathbf{x}) = 0,$$

where $b = \frac{s}{\epsilon^2}$, $c = \frac{1}{\epsilon\delta t}$, and $f_1(\mathbf{x}) = c\phi^n(\mathbf{x}) - \frac{1+s}{\epsilon^2}\Delta\phi^n(\mathbf{x}) + \frac{1}{\epsilon^2}\Delta(\phi^n(\mathbf{x}))^3$, $f_2(\mathbf{x}) = \frac{(\phi^n(\mathbf{x}))^3 - (1+s)\phi^n(\mathbf{x})}{\epsilon^2}$, $h(\mathbf{x}) = c\phi^n(\mathbf{x}) + \frac{1}{\epsilon}\frac{\partial\gamma}{\partial\phi}(\phi^n(\mathbf{x}))$.

Xiaoyu Wei (CS@UIUC)

Use volume potentials to eliminate the inhomogeneous terms by letting

$$\begin{split} \phi^{n+1}(\mathbf{x}) &= \tilde{u}(\mathbf{x}) + u(\mathbf{x}), \qquad \tilde{u}(\mathbf{x}) = V[\phi^n], \\ \frac{1}{\epsilon} \mu^{n+1}(\mathbf{x}) &= \tilde{v}(\mathbf{x}) + v(\mathbf{x}), \qquad \tilde{v}(\mathbf{x}) = f_2(\mathbf{x}) - (\Delta - b)\tilde{u}(\mathbf{x}), \end{split}$$

where $V[\phi^n]$ satisfies

$$(\Delta^2 - b\Delta + c)V[\phi^n](\mathbf{x}) = f_1(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega.$$

• One choice of \tilde{u} is the volume potential

$$V_0[f_1] := \int_\Omega G_0(\mathbf{x}, \mathbf{y}) f_1(\mathbf{y}) d\mathbf{y},$$

where G_0 is the free-space Green's function s.t.,

$$(\Delta^2 - b\Delta + c)G_0(\mathbf{x}, \mathbf{y}) = \delta(\mathbf{x}, \mathbf{y}),$$

in the sense of distributions.

• To compute \tilde{u} : box-FMM + C^1 function extension.

u and v are the solutions to the following pure boundary value problem

$$egin{aligned} &(\Delta^2-b\Delta+c)u(\mathbf{x})=0,\ &\mathbf{v}+(\Delta-b)u(\mathbf{x})=0,\ &(\partial_n+c)u(\mathbf{x})=g_1(\mathbf{x}),\ &\partial_nv(\mathbf{x})=g_2(\mathbf{x}), \end{aligned}$$

where the boundary data g_1 and g_2 are given by

$$g_1(\mathbf{x}) = h(\mathbf{x}) - \tilde{u}_n(\mathbf{x}) - c \tilde{u}(\mathbf{x}),$$

 $g_2(\mathbf{x}) = -\tilde{v}_n(\mathbf{x}).$

Operator Factorization & Layer Potentials

• Factoring a quadratic polynomial:

$$x^2 - bx + c = (x - \lambda_1^2)(x - \lambda_2^2).$$

- Similarly, $\Delta^2 b\Delta + c = (\Delta \lambda_1^2)(\Delta \lambda_2^2)$
- Denote G_i (i = 1, 2) to be the free-space Green's function of the Yukawa operator $\Delta \lambda_i^2$.
- Denote G_0 to be the free-space Green's function of the full operator $\Delta^2 b\Delta + c$.
- Define layer potential operators S_i (i = 0, 1, 2) as

$$S_i[
ho](\mathbf{x}) = \int_{\partial\Omega} G_i(\mathbf{x},\mathbf{y})
ho(\mathbf{y})ds_{\mathbf{y}},$$

where $\rho(\mathbf{x}) \in L^2(\partial \Omega)$,

• Represent u by the sum of two layer potentials

$$u(\mathbf{x}) = \int_{\partial\Omega} \left[G_1(\mathbf{x},\mathbf{y})\sigma_1(\mathbf{y}) + G_0(\mathbf{x},\mathbf{y})\sigma_2(\mathbf{y}) \right] ds_{\mathbf{y}},$$

where σ_i (i = 1, 2) are the unknown densities on $\partial \Omega$.

• Plug in the equation to get representation of v

$$\mathbf{v}(\mathbf{x}) = \int_{\partial\Omega} \left\{ \lambda_2^2 \mathcal{G}_1(\mathbf{x},\mathbf{y}) \sigma_1(\mathbf{y}) + [\lambda_1^2 \mathcal{G}_0(\mathbf{x},\mathbf{y}) - \mathcal{G}_1(\mathbf{x},\mathbf{y})] \sigma_2(\mathbf{y})
ight\} ds_{\mathbf{y}}.$$

Second-Kind Integral Equation (SKIE) Formulation

• Plug representations of *u*, *v* into the boundary conditions to get boundary integral equations

$$(D+A)[\sigma](\mathsf{x}) = g(\mathsf{x}), \quad (\mathsf{x} \in \partial \Omega)$$

$$D = -\frac{1}{2} \begin{bmatrix} 1 & 0 \\ \lambda_2^2 & -1 \end{bmatrix}, \quad A = \begin{bmatrix} \partial_n S_1 + cS_1, & \partial_n S_0 + cS_0 \\ \lambda_2^2 \partial_n S_1, & -\partial_n S_1 + \lambda_1^2 \partial_n S_0 \end{bmatrix},$$

where $\sigma = [\sigma_1, \sigma_2]^T$, $g = [g_1, g_2]^T$.

- *D* has nonzero determinant, *A* is compact \implies *D* + *A* is a Fredholm integral equation of the second kind.
- To solve the SKIE: QBX + GMRES.

Fast Algorithms

- Box FMM (the Box Code)⁶
 - Volume potential evaluation in linear complexity
 - Efficient precompute-reuse strategy for the near-field.
 - Box-shaped geometry only.
- C¹ Function Extension⁷
 - Extend density from Ω to a bounding box.
 - Enables use of box FMM with non-box domains.
 - Exterior biharmonic extension with QBX + GMRES.
- Quadrature-by-Expansion (QBX)⁸
 - Layer potential evaluation
 - Evaluates layer potentials (singular quadrature).
 - Linear complexity when used with FMM.
 - Inplements matvec of the BIE.

⁶Ethridge and Greengard 2001.

⁷Rachh and Askham 2018.

⁸Klöckner et al. 2013.

Xiaoyu Wei (CS@UIUC)

Self-convergence test for one time step, first order discretization.

q_b	q_v	δx	e ₀	Order
1	1	$1.56 imes10^{-2}$	$9.55 imes10^{-1}$	_
1	1	$7.81 imes 10^{-3}$	$4.55 imes10^{-1}$	1.07
1	1	$3.91 imes 10^{-3}$	$1.24 imes10^{-1}$	1.88
1	1	$1.95 imes10^{-3}$	$6.66 imes 10^{-2}$	0.90
1	1	$9.77 imes10^{-4}$	$3.09 imes10^{-2}$	1.11
1	1	$4.88 imes10^{-4}$	$1.04 imes10^{-2}$	1.57

Table: Results Using First-Order Approximation.

Self-convergence test for one time step, second order discretization.

q_b	q_v	δx	e ₀	Order
2	4	$1.56 imes10^{-2}$	$3.11 imes10^{-1}$	_
2	4	$7.81 imes 10^{-3}$	$2.53 imes10^{-1}$	0.30
2	4	$3.91 imes 10^{-3}$	$5.73 imes 10^{-2}$	2.14
2	4	$1.95 imes10^{-3}$	$1.36 imes10^{-2}$	2.07
2	4	$9.77 imes10^{-4}$	$3.71 imes 10^{-3}$	1.87
2	4	$4.88 imes10^{-4}$	$7.23 imes10^{-4}$	2.36

Table: Results Using Second-Order Approximation.

Short-Time Dynamics: Problem Setup

- $\epsilon = 10^{-2}$, $\delta t = 10^{-4}$, $\theta_Y = \pi/3$.
- Initials are generated with B-spline interpolation, using
 - (1) a 200 imes 200 Cartesian grid points as knots, and
 - 2 uniformly random nodal values in $[-10^{-3}, 10^{-3}]$.

The idea here is to mimic a near-uniform state with random perturbations.

Short-Time Dynamics: Initial Condition

Figure: Initial Condition.

Xiaoyu Wei (CS@UIUC)

IEM for Cahn-Hilliard Wetting

2019-02-26 Tue 20 / 29

Short-Time Dynamics (Cont'd)

Figure: Short-Time Dynamics.

Short-Time Dynamics (Cont'd)

Figure: Short-Time Dynamics.

Long-Time Dynamics: Problem Setup

•
$$\epsilon = 10^{-2}$$
, $\delta t = 0.5$, $\theta_Y = \pi/3$.

• Initial condition: $\phi^0(x, y) = \sin\left(\frac{40\pi}{L}x\right)\cos\left(\frac{32\pi}{L}y\right)$, where L = 0.5 is the size of the bounding box.

Figure: Initial Condition.

• Stabilized representation is used to workaround boundary layer issues.

Long-Time Dynamics (Cont'd)

Xiaoyu Wei (CS@UIUC)

IEM for Cahn-Hilliard Wetting

2019-02-26 Tue 24 / 29

2nd Order IEM vs 2nd Order Mixed-FEM

δx	$N_{DOFs}(FEM)$	κ (FEM)
$1.11 imes 10^{-1}$	16	9.79×10^{3}
$6.26 imes 10^{-2}$	50	$1.24 imes 10^4$
3.32×10^{-2}	178	2.15×10^{4}
$1.71 imes 10^{-2}$	674	6.82×10^{4}
8.64×10^{-3}	2626	$1.12 imes~10^5$

δx	$N_{DOFs}(IEM)$	κ (IEM)
$1.11 imes 10^{-1}$	28	9.86×10^{2}
6.26×10^{-2}	50	$9.87 imes 10^2$
3.32×10^{-2}	100	9.88×10^{2}
1.71×10^{-2}	182	9.88×10^{2}
$8.64 imes 10^{-3}$	360	$9.89 imes~10^2$

- Integral equation method for the Cahn-Hilliard equation in bounded 2D domains with solid boundary conditions.
- Two stages for each time step:
 - evaluate volume potentials and
 - solve remaining SKIE.
- Advantages:
 - Small number of unknowns.
 - Well conditioned linear systems.
- Future Work
 - Alternative methods to density extension approach.
 - ② Generalization to 3D problems.
 - QBX direct solver.

Cahn, John W. and John E. Hilliard (Feb. 1958). "Free Energy of a Nonuniform System. I. Interfacial Free Energy". In: *The Journal of Chemical Physics* 28.2, pp. 258–267. ISSN: 0021-9606. DOI: 10.1063/1.1744102.

Ethridge, F. and L. Greengard (Jan. 2001). "A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions". In: *SIAM Journal on Scientific Computing* 23.3, pp. 741–760. ISSN: 1064-8275. DOI: 10.1137/S1064827500369967.

Eyre, David J. (1997). An Unconditionally Stable One-Step Scheme for Gradient Systems.

Klöckner, Andreas et al. (Nov. 2013). "Quadrature by Expansion: A New Method for the Evaluation of Layer Potentials". In: *Journal of Computational Physics* 252, pp. 332–349. ISSN: 0021-9991. DOI: 10.1016/j.jcp.2013.06.027.

Nele Moelans' Website :: Research :: Phase Field Method (n.d.). http://nele.studentenweb.org/research/?subject=PFM. Rachh, Manas and Travis Askham (May 2018). "Integral Equation Formulation of the Biharmonic Dirichlet Problem". In: Journal of Scientific Computing 75.2, pp. 762–781. ISSN: 0885-7474, 1573-7691. DOI: 10.1007/s10915-017-0559-8. arXiv: 1705.09715. Sahoo, Bichitra et al. (Feb. 2018). "Chemical and Physical Pathways for Fabricating Flexible Superamphiphobic Surfaces with High Transparency". en. In: Coatings 8.2, p. 47. DOI:

10.3390/coatings8020047.

 Xu, X. and X. Wang (Jan. 2010). "Derivation of the Wenzel and Cassie Equations from a Phase Field Model for Two Phase Flow on Rough Surface". In: SIAM Journal on Applied Mathematics 70.8, pp. 2929–2941. ISSN: 0036-1399. DOI: 10.1137/090775828.